Predictive toxicology of chemicals and database mining

被引:0
|
作者
Wang, JS [1 ]
Lai, LH [1 ]
Tang, YQ [1 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Inst Phys Chem, Beijing 100871, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2000年 / 45卷 / 12期
基金
中国国家自然科学基金;
关键词
predictive toxicology; database mining; similarity analysis; structure patterns; QSAR;
D O I
10.1007/BF02887181
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The toxic chemicals from the database Registry of Toxic Effects of Chemical Substances (RTECS) were analyzed by structural similarity comparison, which shows that the structure patterns or characteristics of toxic chemicals exist in a sufficiently large database. Then, a two-step strategy was proposed to explore noncongeneric toxic chemicals in the database: the screening of structure patterns by similarity comparison and the derivation of detailed relationship between structure and activity by using comparative molecular field analysis (CoMFA) of Quantitative Structure-Activity Relationship (QSAR) technologies. From the performance of the procedure, such a stepwise scheme is demonstrated to be feasible and effective to mine a database of toxic chemicals. It can be anticipated that database mining of toxic chemicals will be a new area for predictive toxicology of chemicals.
引用
收藏
页码:1093 / 1097
页数:5
相关论文
共 50 条
  • [1] Predictive toxicology of chemicals and database mining
    WANG Jiansuo
    ChineseScienceBulletin, 2000, (12) : 1093 - 1097
  • [3] FUZZY kNNMODEL APPLIED TO PREDICTIVE TOXICOLOGY DATA MINING
    Guo, Gongde
    Neagu, Daniel
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2005, 5 (03) : 321 - 333
  • [4] Data Mining of Toxic Chemicals: Structure Patterns and QSAR
    Jiansuo Wang
    Luhua Lai
    Youqi Tang
    Molecular modeling annual, 1999, 5 : 252 - 262
  • [5] Data mining of toxic chemicals: Structure patterns and QSAR
    Wang, JS
    Lai, LH
    Tang, YQ
    JOURNAL OF MOLECULAR MODELING, 1999, 5 (11) : 252 - 262
  • [6] A comparative study of machine learning algorithms applied to predictive toxicology data mining
    Neagu, Daniel C.
    Guo, Gongde
    Trundle, Paul R.
    Cronin, Mark T. D.
    ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2007, 35 (01): : 25 - 32
  • [7] lazar: a modular predictive toxicology framework
    Maunz, Andreas
    Gutlein, Martin
    Rautenberg, Micha
    Vorgrimmler, David
    Gebele, Denis
    Helma, Christoph
    FRONTIERS IN PHARMACOLOGY, 2013, 4
  • [8] Transcriptomics in predictive toxicology
    Storck, T
    von Brevern, MC
    Behrens, CK
    Scheel, J
    Bach, A
    CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT, 2002, 5 (01) : 90 - 97
  • [9] Web tools for predictive toxicology model building
    Jeliazkova, Nina
    EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2012, 8 (07) : 791 - 801
  • [10] Caenorhabditis elegans for predictive toxicology
    Hunt, Piper Reid
    Camacho, Jessica A.
    Sprando, Robert L.
    CURRENT OPINION IN TOXICOLOGY, 2020, 23-24 : 23 - 28