Asymptotic stability and bifurcations of 3D piecewise smooth vector fields

被引:5
|
作者
Carvalho, Tiago [1 ]
Teixeira, Marco Antonio [2 ,3 ]
Tonon, Durval Jose [4 ]
机构
[1] UNESP, FC, BR-17033360 Bauru, SP, Brazil
[2] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
[3] UFSCar Campus Sorocaba, BR-18052780 Sorocaba, SP, Brazil
[4] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector fields; Cusp-fold singularity; Asymptotic stability; SINGULARITY;
D O I
10.1007/s00033-015-0603-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the analysis of the behavior of a nonsmooth three-dimensional vector field around a typal singularity. We focus on a class of generic one-parameter families Z(lambda) of Filippov systems and address the persistence problem for the asymptotic stability when the parameter varies near the bifurcation value lambda = 0.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] On 3-Parameter Families of Piecewise Smooth Vector Fields in the Plane
    Buzzi, Claudio A.
    de Carvalho, Tiago
    Teixeira, Marco A.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (04): : 1402 - 1424
  • [22] Birth of limit cycles from a 3D triangular center of a piecewise smooth vector field
    Carvalho, Tiago
    Euzebio, Rodrigo D.
    Teixeira, Marco Antonto
    Tonon, Durval Jose
    IMA JOURNAL OF APPLIED MATHEMATICS, 2017, 82 (03) : 561 - 578
  • [23] On piecewise smooth vector fields tangent to nested tori
    Carvalho, Tiago
    Teixeira, Marco A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) : 4008 - 4029
  • [24] On the Closing Lemma for planar piecewise smooth vector fields
    de Carvalho, Tiago
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (06): : 1174 - 1185
  • [25] Symbolic dynamics of planar piecewise smooth vector fields
    Carvalho, Tiago
    Antunes, Andre do Amaral
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 419 : 150 - 174
  • [27] Meshing 3D domains bounded by piecewise smooth surfaces
    Rineau, Laurent
    Yvinec, Mariette
    PROCEEDINGS OF THE 16TH INTERNATIONAL MESHING ROUNDTABLE, 2008, : 443 - +
  • [28] Linearization and Perturbations of Piecewise Smooth Vector Fields with a Boundary Equilibrium
    Tao Li
    Xingwu Chen
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [29] Bifurcations Leading to Nonlinear Oscillations in a 3D Piecewise Linear Memristor Oscillator
    Scarabello, Marluce da Cruz
    Messias, Marcelo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (01):
  • [30] On the Poincaré-Bendixson Formula for Planar Piecewise Smooth Vector Fields
    Li, Shimin
    Liu, Changjian
    Llibre, Jaume
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (06)