Influence of fission products on ruthenium oxidation and transport in air ingress nuclear accidents

被引:21
作者
Ver, N. [1 ]
Matus, L. [1 ]
Kunstar, M. [1 ]
Osan, J. [1 ]
Hozer, Z. [1 ]
Pinter, A. [1 ]
机构
[1] Hungarian Acad Sci, KFKI Atom Energy Res Inst, H-1525 Budapest, Hungary
关键词
PRESSURIZED-WATER-REACTOR; OXIDE DEPOSITS; FUELS; CHEMISTRY; EMISSION; BEHAVIOR; SYSTEM;
D O I
10.1016/j.jnucmat.2009.11.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In separate effect tests at 1000-1200 degrees C Ru oxidation rate and content of Ru in escaping air flow have been studied with special emphasis on effects of other fission product elements on the Ru oxidation and transport. The results showed that in the decreasing temperature section (1100-600 degrees C) most of the RuO(3) and RuO(4) (approximate to 95%) decomposed and formed RuO(2) crystals; while the partial pressure of RuO(4) in the escaping air was in the range of 10(-6) bar. The re-evaporation of deposited RuO(2) resulted in about 10-6 bar partial pressure in the outlet gas as well. Measurements demonstrated the importance of surface quality in the decreasing temperature area on the heterogeneous phase decomposition of ruthenium oxides to RuO(2). On the other hand water or molybdenum oxide vapour in air appears to decrease the surface catalyzed decomposition of RuO(x) to RuO(2) and increases RuO(4) concentration in the escaping air. High temperature reaction with caesium changed the form of the released ruthenium and caused a time delay in appearance of maximum concentration of ruthenium oxides in the ambient temperature escaping gas, while reaction with barium and rare earth oxides extended Ru escape from the high temperature area. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:208 / 217
页数:10
相关论文
共 25 条
[1]  
ALBRECHT H, 1987, 4264 KFK ABSCHL SASC
[2]   Progress on ruthenium release and transport under air ingress conditions [J].
Auvinen, A. ;
Brillant, G. ;
Davidovich, N. ;
Dickson, R. ;
Ducros, G. ;
Dutheillet, Y. ;
Giordano, P. ;
Kunstar, M. ;
Kaerkelae, T. ;
Mladin, M. ;
Pontillon, Y. ;
Seropian, C. ;
Ver, N. .
NUCLEAR ENGINEERING AND DESIGN, 2008, 238 (12) :3418-3428
[3]   On the transport and speciation of ruthenium in high temperature oxidising conditions [J].
Backman, U ;
Lipponen, M ;
Auvinen, A ;
Tapper, U ;
Zilliacus, R ;
Jokiniemi, JK .
RADIOCHIMICA ACTA, 2005, 93 (05) :297-304
[4]  
Barrand R.D., 1999, 6 INT C CANDU FUEL N
[5]   BINARY OXIDE SYSTEM TEO2-MOO3 [J].
BART, JCJ ;
PETRINI, G ;
GIORDANO, N .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1975, 412 (03) :258-270
[6]   HIGH-TEMPERATURE CHEMISTRY OF RUTHENIUM-OXYGEN SYSTEM [J].
BELL, WE ;
TAGAMI, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1963, 67 (11) :2432-&
[7]   POLYMERIC GASEOUS SPECIES IN THE SUBLIMATION OF MOLYBDENUM TRIOXIDE [J].
BERKOWITZ, J ;
INGHRAM, MG ;
CHUPKA, WA .
JOURNAL OF CHEMICAL PHYSICS, 1957, 26 (04) :842-846
[9]   METALLIC FISSION-PRODUCT INCLUSIONS IN IRRADIATED OXIDE FUELS [J].
BRAMMAN, JI ;
SHARPE, RM ;
THOM, D ;
YATES, G .
JOURNAL OF NUCLEAR MATERIALS, 1968, 25 (02) :201-&
[10]   VAPOR-PRESSURES OF SOME CESIUM COMPOUNDS .2. CS2MOO4 AND CS2RUO4 [J].
CORDFUNKE, EHP ;
KONINGS, RJM ;
MEYSSEN, SRM .
JOURNAL OF CHEMICAL THERMODYNAMICS, 1992, 24 (07) :725-728