Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries

被引:75
作者
Zeng, Zhipeng [1 ]
Zhao, Hailei [1 ,2 ]
Lv, Pengpeng [1 ]
Zhang, Zijia [1 ]
Wang, Jie [1 ]
Xia, Qing [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] Beijing Key Lab New Energy Mat & Technol, Beijing 100083, Peoples R China
关键词
Gel-like film; Hollow nanotubes; Iron oxides; Electrochemical properties; Lithium ion batteries; FE3O4; NANOPARTICLES; SCALE SYNTHESIS; CARBON MATRIX; GRAPHENE; PERFORMANCE; OXIDE; COMPOSITE; CAPACITY; HYBRID; FOAM;
D O I
10.1016/j.jpowsour.2014.10.181
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A composited anode material with combined Fe3O4/FeO nanotube and carbon shell is synthesized by a facile hydrothermal method with subsequent CVD heat treatment. The as-prepared Fe3O4/FeO/C composite shows excellent cycle stability and rate capability as lithium ion battery anode. We study the effect of FeO on the electrochemical performances of the Fe3O4/FeO/C electrode. A capacity climbing phenomenon can be observed for the Fe3O4/FeO/C electrodes, which tends to be more evident with increasing FeO content. The "extra capacity" is correlated with the reversible formation of polymeric gel-like film on the particle surface of active materials, which is electrochemical active towards Li ions. The FeO component presents a certain extent of catalytic role in assisting the formation of the gel-like film. Transmission electron microscope (TEM) and electrochemical impedance spectroscopy (EIS) analytical technique are combined to further confirm the reversible growth of the SEI gel-like film. High temperature promotes the formation of gel-like film, while the resistance from the film decreases remarkably with temperature due to the enhanced lithium ion conductivity. The film contributes little to the whole EIS resistance of Fe3O4/FeO nanotube/carbon electrode. Tentative explanations based on the current experiments and existing literature are made to explain such unusual finding. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1091 / 1099
页数:9
相关论文
共 50 条
  • [21] Preparation of Silicon Oxide-Carbon Composite with Tailored Electrochemical Properties for Anode in Lithium-Ion Batteries
    Kim, Sang Jin
    Ha, Seung-Jae
    Lee, Jea Uk
    Jeon, Young-Pyo
    Hong, Jin-Yong
    Bedia, Jorge
    Vedyagin, Aleksey A.
    C-JOURNAL OF CARBON RESEARCH, 2023, 9 (04):
  • [22] Electrodeposited Germanium/Carbon Composite as an Anode Material for Lithium Ion Batteries
    Kim, Sang-Wan
    Duc Tung Ngo
    Heo, Jaeyeong
    Park, Choong-Nyeon
    Park, Chan-Jin
    ELECTROCHIMICA ACTA, 2017, 238 : 319 - 329
  • [23] Preparation and electrochemical properties of carbon-doped TiO2 nanotubes as an anode material for lithium-ion batteries
    Xu, Jinwei
    Wang, Yunfei
    Li, Zonghui
    Zhang, We
    JOURNAL OF POWER SOURCES, 2008, 175 (02) : 903 - 908
  • [24] Hydrothermal Synthesis and Electrochemical Properties of TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries
    Chen, Huaimin
    Chen, Da
    Bai, Liqun
    Shu, Kangying
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (02): : 2118 - 2125
  • [25] Electrodeposition of iron oxide nanorods on carbon nanofiber scaffolds as an anode material for lithium-ion batteries
    Wu, Mao-Sung
    Ou, Yang-Hui
    Lin, Ya-Ping
    ELECTROCHIMICA ACTA, 2010, 55 (09) : 3240 - 3244
  • [26] Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries
    Sun Xue-Mei
    Gao Li-Jun
    ACTA PHYSICO-CHIMICA SINICA, 2015, 31 (08) : 1521 - 1526
  • [27] Electrochemical dispersion method for the synthesis of SnO2 as anode material for lithium ion batteries
    Kuriganova, Alexandra B.
    Vlaic, Codruta A.
    Ivanov, Svetlozar
    Leontyeva, Daria V.
    Bund, Andreas
    Smirnova, Nina V.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2016, 46 (05) : 527 - 538
  • [28] Synthesis and Electrochemical Properties of Stannous Oxide Clinopinacoid as Anode Material for Lithium Ion Batteries
    Iqbal, M. Zubair
    Wang, Fengping
    Rafique, M. Yasir
    Ali, Shujaat
    Din, Rafi Ud
    Farooq, M. Hassan
    Khan, Matiullah
    Ali, Murad
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (03) : 1773 - 1779
  • [29] Synthesis and Electrochemical Performances of FeSe2/C as Anode Material for Lithium Ion Batteries
    Bai, Jin
    Wu, Huimin
    Wang, Shiquan
    Zhang, Guangxue
    Feng, Chuanqi
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (09) : 5933 - 5940
  • [30] NiO hollow microspheres interconnected by carbon nanotubes as an anode for lithium ion batteries
    Cao, Wen
    Hu, Aiping
    Chen, Xiaohua
    Liu, Xiaohong
    Liu, Peng
    Tang, Qunli
    Zhao, X. S.
    ELECTROCHIMICA ACTA, 2016, 213 : 75 - 82