共 46 条
[41]
Some classes of permutation polynomials of the form b(xq+ax+δ)i(q2-1)d+1+c(xq+ax+δ)j(q2-1)d+1+L(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$b(x^q+ax+\delta )^{\frac{i(q^2-1)}{d}+1}+c(x^q+ax+\delta )^{\frac{j(q^2-1)}{d}+1}+L(x)$$\end{document} over Fq2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {{{\mathbb {F}}}}_{q^2}$$\end{document}
[J].
Applicable Algebra in Engineering, Communication and Computing,
2022, 33 (2)
:135-149
[42]
Characterizations and constructions of triple-cycle permutations of the form xrh(xs)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x^rh(x^s)$$\end{document}
[J].
Designs, Codes and Cryptography,
2020, 88
:2119-2132
[43]
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\boldsymbol{x^{2^l+1}+x+a}$\end{document} and related affine polynomials over GF (2k)
[J].
Cryptography and Communications,
2010, 2 (1)
:85-109
[44]
New constructions of permutation polynomials of the form xrhxq-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x^rh\left( x^{q-1}\right) $$\end{document} over Fq2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb F}_{q^2}$$\end{document}
[J].
Designs, Codes and Cryptography,
2018, 86 (10)
:2379-2405
[45]
Permutation polynomials of the type xrg(xs)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x^rg(x^{s})$$\end{document} over Fq2n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {F}}_{q^{2n}}$$\end{document}
[J].
Designs, Codes and Cryptography,
2018, 86 (8)
:1589-1599
[46]
Complete characterization of some permutation polynomials of the form xr(1+axs1(q-1)+bxs2(q-1))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x^r(1+ax^{s_1(q-1)}+bx^{s_2(q-1)})$$\end{document} over Fq2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {F}_{q^2}$$\end{document}
[J].
Cryptography and Communications,
2023, 15 (4)
:775-793