Road excitation classification for semi-active suspension system based on system response

被引:90
|
作者
Qin, Yechen [1 ]
Xiang, Changle [1 ]
Wang, Zhenfeng [1 ]
Dong, Mingming [1 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Adaptive suspension system; minimum redundancy maximum relevance (mRMR); road estimation; semi-active suspension system; wavelet packet analysis; FEATURE-SELECTION;
D O I
10.1177/1077546317693432
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Vehicle performance is largely affected by the properties of the suspension system, where semi-active suspension has been widely used in mass production of vehicles owing to its characteristics such as internal stability and low energy consumption. To solve the contradiction between ride comfort and road handling, road estimation based semi-active suspension has received considerable attention in recent years. In order to provide accurate estimation for advanced control strategies applications, this paper aims to develop a new method that can provide precise road class estimation based on measurable suspension system response (i.e. sprung mass acceleration, unsprung mass acceleration and rattle space). The response signal is first decomposed using wavelet packet analysis, and features in both time and frequency domains are subsequently extracted. Then, minimum redundancy maximum relevance (mRMR) is utilized to select superior features. Finally, a probabilistic neural network (PNN) classifier is applied to determine road classification output. The most representative semi-active control strategy, i.e. skyhook control, is used to validate this method, and simulation results with varying conditions including different control parameters and sprung mass are compared. The results show that unsprung mass acceleration is most suitable for road classification, and more robust to varying conditions in comparison to other responses.
引用
收藏
页码:2732 / 2748
页数:17
相关论文
共 50 条
  • [21] CONTROL DESIGN STRATEGIES FOR SEMI-ACTIVE SUSPENSION SYSTEM
    Maradey Lazaro, Jessica Gissella
    Esteban Villegas, Helio
    Ruiz, Brajan
    Aldana, Andres
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 4, 2020,
  • [22] Design considerations for a semi-active electromagnetic suspension system
    Paulides, Johannes J. H.
    Encica, Laurentiu
    Lomonova, Elena A.
    Vandenput, Andre J. A.
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (10) : 3446 - 3448
  • [23] Semi-active suspension system simulation using Simulink
    Abramov, Sergey
    Mannan, Samjid
    Durieux, Olivier
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2009, 1 (2-3) : 101 - 114
  • [24] NONLINEAR CONTROL OF SEMI-ACTIVE MACPHERSON SUSPENSION SYSTEM
    Anubi, Olugbenga M.
    Crane, Carl D., III
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 6, 2012, : 397 - 406
  • [25] Initial Pitch Control for Semi-active Suspension System
    Kaldas, Mina M.
    Rivas, Jorge
    Soliman, Aref M. A.
    SAE INTERNATIONAL JOURNAL OF VEHICLE DYNAMICS STABILITY AND NVH, 2022, 6 (04): : 405 - 419
  • [26] Functional Research of Networked Semi-Active Suspension System
    Youness, S. F.
    Lobusov, E. C.
    XLIV ACADEMIC SPACE CONFERENCE: DEDICATED TO THE MEMORY OF ACADEMICIAN S.P. KOROLEV AND OTHER OUTSTANDING RUSSIAN SCIENTISTS - PIONEERS OF SPACE EXPLORATION, 2021, 2318
  • [27] Force Control System for an Automotive Semi-active Suspension
    Vivas-Lopez, Carlos A.
    Hernandez-Alcantara, Diana
    Manh-Quan Nguyen
    Morales-Menendez, Ruben
    Sename, Olivier
    IFAC PAPERSONLINE, 2015, 48 (26): : 55 - 60
  • [28] Hybrid fuzzy control of semi-active suspension system
    Huang, Chen
    Chen, Long
    Yuan, Zhaochun
    Jiang, Haobin
    Niu, Liming
    Qiche Gongcheng/Automotive Engineering, 2014, 36 (08): : 999 - 1003
  • [29] A NEW SEMI-ACTIVE SUSPENSION SYSTEM FOR VEHICLE APPLICATIONS
    Siramdasu, Yaswanth
    Taheri, Saied
    PROCEEDINGS OF THE ASME 10TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2017, VOL 1, 2017,
  • [30] Signal analysis for a semi-active suspension isolation system
    Tao, Sun
    Li Fanbing
    THIRD INTERNATIONAL SYMPOSIUM ON PRECISION MECHANICAL MEASUREMENTS, PTS 1 AND 2, 2006, 6280