Electric distribution network expansion under load-evolution uncertainty using an immune system inspired algorithm

被引:72
作者
Carrano, Eduardo G. [1 ]
Guirnaraes, Frederico G.
Takahashi, Ricardo H. C.
Neto, Oriane A.
Campelo, Felipe
机构
[1] Univ Fed Minas Gerais, Dept Elect Engn, BR-31270010 Belo Horizonte, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Math, BR-30123970 Belo Horizonte, MG, Brazil
[3] Hokkaido Univ, Grad Sch Informat Sci & Technol, Lab Hybrid Syst, Sapporo, Hokkaido 0600814, Japan
关键词
artificial immune systems; load evolution uncertainty; multiobjective sensitivity analysis; network optimization; power distribution planning;
D O I
10.1109/TPWRS.2007.894847
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the problem of electric distribution network expansion under condition of uncertainty in the evolution of node loads in a time horizon. An immune-based evolutionary optimization algorithm is developed here, in order to find not only the optimal network, but also a set of suboptimal ones, for a given most probable scenario. A Monte-Carlo simulation of the future load conditions is performed, evaluating each such solution within a set of other possible scenarios. A dominance analysis is then performed in order to compare the candidate solutions, considering the objectives of: smaller infeasibility rate, smaller nominal cost, smaller mean cost and smaller fault cost. The design outcome is a network that has a satisfactory behavior under the considered scenarios. Simulation results show that the proposed approach leads to resulting networks that can be rather different from the networks that would be found via a conventional design procedure: reaching more robust performances under load evolution uncertainties.
引用
收藏
页码:851 / 861
页数:11
相关论文
共 17 条
[1]  
BERNALAGUSTIN JL, 1998, THESIS ZARAGOZA U ZA
[2]  
Carrano E. G., 2007, ELECT DISTRIBUTION N
[3]   Electric distribution network multiobjective design using a problem-specific genetic algorithm [J].
Carrano, EG ;
Soares, LAE ;
Takahashi, RHC ;
Saldanha, RR ;
Neto, OM .
IEEE TRANSACTIONS ON POWER DELIVERY, 2006, 21 (02) :995-1005
[4]   Optimal substation location and energy distribution network design using a hybrid GA-BFGS algorithm [J].
Carrano, EG ;
Takahashi, RHC ;
Cardoso, EP ;
Saldanha, RR ;
Neto, OM .
IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2005, 152 (06) :919-926
[5]   Optimal distribution network expansion planning under uncertainty by evolutionary decision convergence [J].
Carvalho, PMS ;
Ferreira, LAFM .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1998, 20 (02) :125-129
[6]  
de Castro LN, 2003, SOFT COMPUT, V7, P526, DOI [10.1007/S00500-002-0237-Z, 10.1007/S00500-002-0237-z]
[7]  
de Castro LN, 2002, IEEE C EVOL COMPUTAT, P699, DOI 10.1109/CEC.2002.1007011
[8]   Learning and optimization using the clonal selection principle [J].
de Castro, LN ;
Von Zuben, FJ .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (03) :239-251
[9]   Power distribution system optimization by an algorithm for capacitated Steiner tree problems with complex-flows and arbitrary cost functions [J].
Duan, G ;
Yu, YX .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2003, 25 (07) :515-523
[10]   Ant colony system algorithm for the planning of primary distribution circuits [J].
Gómez, JF ;
Khodr, HA ;
De Oliveira, PA ;
Ocque, L ;
Yusta, JA ;
Villasana, R ;
Urdaneta, AJ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2004, 19 (02) :996-1004