Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation

被引:54
作者
Petit, Yann K. [1 ]
Mourad, Eleonore [1 ]
Prehal, Christian [1 ]
Leypold, Christian [1 ]
Windischbacher, Andreas [2 ]
Mijailovic, Daniel [1 ,3 ]
Slugovc, Christian [1 ]
Borisov, Sergey M. [4 ]
Zojer, Egbert [2 ]
Brutti, Sergio [5 ]
Fontaine, Olivier [6 ,7 ,8 ]
Freunberger, Stefan A. [1 ,8 ]
机构
[1] Graz Univ Technol, Inst Chem & Technol Mat, Graz, Austria
[2] Graz Univ Technol, Inst Solid State Phys, Graz, Austria
[3] Univ Belgrade, Fac Technol & Met, Belgrade, Serbia
[4] Graz Univ Technol, Inst Analyt Chem & Food Chem, Graz, Austria
[5] Univ Roma La Sapienza, Dipartimento Chim, Rome, Italy
[6] Univ Montpellier, Inst Charles Gerhardt Montpellier, Montpellier, France
[7] Vidyasirimedhi Inst Sci & Technol VISTEC, Sch Energy Sci & Engn, Rayong, Thailand
[8] IST Austria Inst Sci & Technol Austria, Klosterneuburg, Austria
基金
欧洲研究理事会;
关键词
D O I
10.1038/s41557-021-00643-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aprotic alkali metal-O-2 batteries face two major obstacles to their chemistry occurring efficiently, the insulating nature of the formed alkali superoxides/peroxides and parasitic reactions that are caused by the highly reactive singlet oxygen (O-1(2)). Redox mediators are recognized to be key for improving rechargeability. However, it is unclear how they affect O-1(2) formation, which hinders strategies for their improvement. Here we clarify the mechanism of mediated peroxide and superoxide oxidation and thus explain how redox mediators either enhance or suppress O-1(2) formation. We show that charging commences with peroxide oxidation to a superoxide intermediate and that redox potentials above similar to 3.5 V versus Li/Li+ drive O-1(2) evolution from superoxide oxidation, while disproportionation always generates some O-1(2). We find that O-1(2) suppression requires oxidation to be faster than the generation of O-1(2) from disproportionation. Oxidation rates decrease with growing driving force following Marcus inverted-region behaviour, establishing a region of maximum rate.
引用
收藏
页码:465 / +
页数:10
相关论文
共 53 条
[1]  
Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/nchem.2132, 10.1038/NCHEM.2132]
[2]   FORMATION OF SULFINYL OXIDE AND SINGLET OXYGEN IN THE REACTION OF THIANTHRENE CATION RADICAL AND SUPEROXIDE ION [J].
ANDO, W ;
KABE, Y ;
KOBAYASHI, S ;
TAKYU, C ;
YAMAGISHI, A ;
INABA, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1980, 102 (13) :4526-4528
[3]  
Aurbach D, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.128, 10.1038/nenergy.2016.128]
[4]   TEMPO: A Mobile Catalyst for Rechargeable Li-O2 Batteries [J].
Bergner, Benjamin J. ;
Schuermann, Adrian ;
Peppler, Klaus ;
Garsuch, Arnd ;
Janek, Juergen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (42) :15054-15064
[5]   Implications of 4 e- Oxygen Reduction via Iodide Redox Mediation in Li-O2 Batteries [J].
Burke, Colin M. ;
Black, Robert ;
Kochetkov, Ivan R. ;
Giordani, Vincent ;
Addison, Dan ;
Nazar, Linda F. ;
McCloskey, Bryan D. .
ACS ENERGY LETTERS, 2016, 1 (04) :747-756
[6]  
Chase G.V, 2011, US Patent App, Patent No. [13/093,759, 13093759]
[7]   Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium-oxygen cell [J].
Chen, Yuhui ;
Gao, Xiangwen ;
Johnson, Lee R. ;
Bruce, Peter G. .
NATURE COMMUNICATIONS, 2018, 9
[8]  
Chen YH, 2013, NAT CHEM, V5, P489, DOI [10.1038/nchem.1646, 10.1038/NCHEM.1646]
[9]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[10]  
Costentin C., 2006, Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry, V2nd ed.