Focusing Quantum Many-body Dynamics: The Rigorous Derivation of the 1D Focusing Cubic Nonlinear Schrodinger Equation

被引:39
作者
Chen, Xuwen [1 ]
Holmer, Justin [2 ]
机构
[1] Univ Rochester, Dept Math, Hylan Bldg, Rochester, NY 14627 USA
[2] Brown Univ, Dept Math, 151 Thayer St, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
GROSS-PITAEVSKII EQUATION; BOSE-EINSTEIN CONDENSATION; MEAN-FIELD LIMIT; TIME; UNIQUENESS; EVOLUTION; BOSONS;
D O I
10.1007/s00205-016-0970-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the dynamics of N bosons in 1D. We assume that the pair interaction is attractive and given by N beta-1V(N-beta.) where integral V <= 0. We develop new techniques in treating the N-body Hamiltonian so that we overcome the difficulties generated by the attractive interaction and establish new energy estimates. We also prove the optimal 1D collapsing estimate which reduces the regularity requirement in the uniqueness argument by half a derivative. We derive rigorously the 1D focusing cubic NLS with a quadratic trap as the N -> infinity limit of the N-body dynamic and hence justify the mean-field limit and prove the propagation of chaos for the focusing quantum many-body system.
引用
收藏
页码:631 / 676
页数:46
相关论文
共 50 条
[1]   Rigorous derivation of the cubic NLS in dimension one [J].
Adami, Riccardo ;
Golse, Francois ;
Teta, Alessandro .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (06) :1193-1220
[2]   Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states [J].
Ammari, Z. ;
Nier, F. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (06) :585-626
[3]  
Ammari Z, 2015, ANN SCUOLA NORM-SCI, V14, P155
[4]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[5]  
[Anonymous], 2005, MATH SURVEYS MONOGRA, DOI DOI 10.1090/SURV/120
[6]  
Beckner W, 2014, P AM MATH SOC, V142, P1217
[7]   Quantitative Derivation of the Gross-Pitaevskii Equation [J].
Benedikter, Niels ;
de Oliveira, Gustavo ;
Schlein, Benjamin .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (08) :1399-1482
[8]   NONLINEAR SCHRODINGER EQUATION WITH TIME DEPENDENT POTENTIAL [J].
Carles, Remi .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (04) :937-964
[9]   Rate of Convergence Towards Hartree Dynamics [J].
Chen, Li ;
Lee, Ji Oon ;
Schlein, Benjamin .
JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (04) :872-903
[10]  
Chen T., 2012, Contemporary Mathematics, V581, P39