Local integrals of motion in many-body localized systems

被引:204
作者
Imbrie, John Z. [1 ]
Ros, Valentina [2 ,4 ]
Scardicchio, Antonello [3 ,4 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[2] SISSA Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
[3] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[4] INFN Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
关键词
many-body localization; local integrals of motion; LARGE DISORDER; QUANTUM; STATISTICS; THERMALIZATION; TRANSITION; DIFFUSION; SPECTRA; ABSENCE;
D O I
10.1002/andp.201600278
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the current (as of Fall 2016) status of the studies on the emergent integrability in many-body localized models. We start by explaining how the phenomenology of fully many-body localized systems can be recovered if one assumes the existence of a complete set of (quasi)local operators which commute with the Hamiltonian (local integrals of motions, or LIOMs). We describe the evolution of this idea from the initial conjecture, to the perturbative constructions, to the mathematical proof given for a disordered spin chain. We discuss the proposed numerical algorithms for the construction of LIOMs and the status of the debate on the existence and nature of such operators in systems with a many-body mobility edge, and in dimensions larger than one.
引用
收藏
页数:23
相关论文
共 110 条
[101]   ERGODICITY, CONSTANTS OF MOTION, AND BOUNDS FOR SUSCEPTIBILITIES [J].
SUZUKI, M .
PHYSICA, 1971, 51 (02) :277-&
[102]   Quantum revivals and many-body localization [J].
Vasseur, R. ;
Parameswaran, S. A. ;
Moore, J. E. .
PHYSICAL REVIEW B, 2015, 91 (14)
[103]   Theory of the Many-Body Localization Transition in One-Dimensional Systems [J].
Vosk, Ronen ;
Huse, David A. ;
Altman, Ehud .
PHYSICAL REVIEW X, 2015, 5 (03)
[104]   Dynamical Quantum Phase Transitions in Random Spin Chains [J].
Vosk, Ronen ;
Altman, Ehud .
PHYSICAL REVIEW LETTERS, 2014, 112 (21)
[105]   Many-Body Localization in One Dimension as a Dynamical Renormalization Group Fixed Point [J].
Vosk, Ronen ;
Altman, Ehud .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[106]   Numerical canonical transformation approach to quantum many-body problems [J].
White, SR .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (16) :7472-7482
[107]   Two-Component Structure in the Entanglement Spectrum of Highly Excited States [J].
Yang, Zhi-Cheng ;
Chamon, Claudio ;
Hamma, Alioscia ;
Mucciolo, Eduardo R. .
PHYSICAL REVIEW LETTERS, 2015, 115 (26)
[108]   Diffusive and Subdiffusive Spin Transport in the Ergodic Phase of a Many-Body Localizable System [J].
Znidaric, Marko ;
Scardicchio, Antonello ;
Varma, Vipin Kerala .
PHYSICAL REVIEW LETTERS, 2016, 117 (04)
[109]   Many-body localization in the Heisenberg XXZ magnet in a random field [J].
Znidaric, Marko ;
Prosen, Tomaz ;
Prelovsek, Peter .
PHYSICAL REVIEW B, 2008, 77 (06)
[110]   Transport and conservation laws [J].
Zotos, X ;
Naef, F ;
Prelovsek, P .
PHYSICAL REVIEW B, 1997, 55 (17) :11029-11032