Local integrals of motion in many-body localized systems

被引:204
作者
Imbrie, John Z. [1 ]
Ros, Valentina [2 ,4 ]
Scardicchio, Antonello [3 ,4 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[2] SISSA Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
[3] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[4] INFN Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
关键词
many-body localization; local integrals of motion; LARGE DISORDER; QUANTUM; STATISTICS; THERMALIZATION; TRANSITION; DIFFUSION; SPECTRA; ABSENCE;
D O I
10.1002/andp.201600278
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the current (as of Fall 2016) status of the studies on the emergent integrability in many-body localized models. We start by explaining how the phenomenology of fully many-body localized systems can be recovered if one assumes the existence of a complete set of (quasi)local operators which commute with the Hamiltonian (local integrals of motions, or LIOMs). We describe the evolution of this idea from the initial conjecture, to the perturbative constructions, to the mathematical proof given for a disordered spin chain. We discuss the proposed numerical algorithms for the construction of LIOMs and the status of the debate on the existence and nature of such operators in systems with a many-body mobility edge, and in dimensions larger than one.
引用
收藏
页数:23
相关论文
共 110 条
[91]   Integrals of motion in the many-body localized phase (vol 891, pg 420, 2015) [J].
Ros, V. ;
Mueller, M. ;
Scardicchio, A. .
NUCLEAR PHYSICS B, 2015, 900 :446-448
[92]   Observation of many-body localization of interacting fermions in a quasirandom optical lattice [J].
Schreiber, Michael ;
Hodgman, Sean S. ;
Bordia, Pranjal ;
Lueschen, Henrik P. ;
Fischer, Mark H. ;
Vosk, Ronen ;
Altman, Ehud ;
Schneider, Ulrich ;
Bloch, Immanuel .
SCIENCE, 2015, 349 (6250) :842-845
[93]   Interferometric Probes of Many-Body Localization [J].
Serbyn, M. ;
Knap, M. ;
Gopalakrishnan, S. ;
Papic, Z. ;
Yao, N. Y. ;
Laumann, C. R. ;
Abanin, D. A. ;
Lukin, M. D. ;
Demler, E. A. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[94]   Power-Law Entanglement Spectrum in Many-Body Localized Phases [J].
Serbyn, Maksym ;
Michailidis, Alexios A. ;
Abanin, Dmitry A. ;
Papic, Z. .
PHYSICAL REVIEW LETTERS, 2016, 117 (16)
[95]   Spectral statistics across the many-body localization transition [J].
Serbyn, Maksym ;
Moore, Joel E. .
PHYSICAL REVIEW B, 2016, 93 (04)
[96]   Quantum quenches in the many-body localized phase [J].
Serbyn, Maksym ;
Papic, Z. ;
Abanin, D. A. .
PHYSICAL REVIEW B, 2014, 90 (17)
[97]   Local Conservation Laws and the Structure of the Many-Body Localized States [J].
Serbyn, Maksym ;
Papic, Z. ;
Abanin, Dmitry A. .
PHYSICAL REVIEW LETTERS, 2013, 111 (12)
[98]   Universal Slow Growth of Entanglement in Interacting Strongly Disordered Systems [J].
Serbyn, Maksym ;
Papic, Z. ;
Abanin, Dmitry A. .
PHYSICAL REVIEW LETTERS, 2013, 110 (26)
[99]  
Smith J, 2016, NAT PHYS, V12, P907, DOI [10.1038/NPHYS3783, 10.1038/nphys3783]
[100]   CHAOS AND QUANTUM THERMALIZATION [J].
SREDNICKI, M .
PHYSICAL REVIEW E, 1994, 50 (02) :888-901