Local integrals of motion in many-body localized systems

被引:198
|
作者
Imbrie, John Z. [1 ]
Ros, Valentina [2 ,4 ]
Scardicchio, Antonello [3 ,4 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[2] SISSA Int Sch Adv Studies, Via Bonomea 265, I-34136 Trieste, Italy
[3] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[4] INFN Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
关键词
many-body localization; local integrals of motion; LARGE DISORDER; QUANTUM; STATISTICS; THERMALIZATION; TRANSITION; DIFFUSION; SPECTRA; ABSENCE;
D O I
10.1002/andp.201600278
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the current (as of Fall 2016) status of the studies on the emergent integrability in many-body localized models. We start by explaining how the phenomenology of fully many-body localized systems can be recovered if one assumes the existence of a complete set of (quasi)local operators which commute with the Hamiltonian (local integrals of motions, or LIOMs). We describe the evolution of this idea from the initial conjecture, to the perturbative constructions, to the mathematical proof given for a disordered spin chain. We discuss the proposed numerical algorithms for the construction of LIOMs and the status of the debate on the existence and nature of such operators in systems with a many-body mobility edge, and in dimensions larger than one.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Local integrals of motion in quasiperiodic many-body localized systems
    Thomson, Steven J.
    Schiro, Marco
    SCIPOST PHYSICS, 2023, 14 (05):
  • [2] Local integrals of motion for topologically ordered many-body localized systems
    Wahl, Thorsten B.
    Beri, Benjamin
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [3] Constructing local integrals of motion in the many-body localized phase
    Chandran, Anushya
    Kim, Isaac H.
    Vidal, Guifre
    Abanin, Dmitry A.
    PHYSICAL REVIEW B, 2015, 91 (08)
  • [4] Integrals of motion in the many-body localized phase
    Ros, V.
    Mueller, M.
    Scardicchio, A.
    NUCLEAR PHYSICS B, 2015, 891 : 420 - 465
  • [5] Many-body localization from the perspective of Integrals of Motion
    Rademaker, Louk
    Ortuno, Miguel
    Somoza, Andres M.
    ANNALEN DER PHYSIK, 2017, 529 (07)
  • [6] Logarithmic entanglement lightcone in many-body localized systems
    Deng, Dong-Ling
    Li, Xiaopeng
    Pixley, J. H.
    Wu, Yang-Le
    Das Sarma, S.
    PHYSICAL REVIEW B, 2017, 95 (02)
  • [7] Ergodic inclusions in many-body localized systems
    Colmenarez, Luis
    Luitz, David J.
    De Roeck, Wojciech
    PHYSICAL REVIEW B, 2024, 109 (08)
  • [8] Exploring one-particle orbitals in large many-body localized systems
    Villalonga, Benjamin
    Yu, Xiongjie
    Luitz, David J.
    Clark, Bryan K.
    PHYSICAL REVIEW B, 2018, 97 (10)
  • [9] Periodically driven ergodic and many-body localized quantum systems
    Ponte, Pedro
    Chandran, Anushya
    Papic, Z.
    Abanin, Dmitry A.
    ANNALS OF PHYSICS, 2015, 353 : 196 - 204