many-body localization;
local integrals of motion;
LARGE DISORDER;
QUANTUM;
STATISTICS;
THERMALIZATION;
TRANSITION;
DIFFUSION;
SPECTRA;
ABSENCE;
D O I:
10.1002/andp.201600278
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We review the current (as of Fall 2016) status of the studies on the emergent integrability in many-body localized models. We start by explaining how the phenomenology of fully many-body localized systems can be recovered if one assumes the existence of a complete set of (quasi)local operators which commute with the Hamiltonian (local integrals of motions, or LIOMs). We describe the evolution of this idea from the initial conjecture, to the perturbative constructions, to the mathematical proof given for a disordered spin chain. We discuss the proposed numerical algorithms for the construction of LIOMs and the status of the debate on the existence and nature of such operators in systems with a many-body mobility edge, and in dimensions larger than one.
机构:
Ist Nazl Fis Nucl, Sez Trieste, I-34151 Trieste, Italy
Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
Columbia Univ, Dept Phys, New York, NY 10027 USA
CUNY, Grad Coll, ITS, New York, NY 10016 USASISSA, I-34136 Trieste, Italy
机构:
Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
Rademaker, Louk
Ortuno, Miguel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Murcia, Dept Fis CIOyN, E-30071 Murcia, SpainUniv Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
Ortuno, Miguel
Somoza, Andres M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Murcia, Dept Fis CIOyN, E-30071 Murcia, SpainUniv Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA