STRONGLY CLEAN TRIANGULAR MATRIX RINGS WITH ENDOMORPHISMS
被引:0
|
作者:
Chen, H.
论文数: 0引用数: 0
h-index: 0
机构:
Hangzhou Normal Univ, Dept Math, Hangzhou 310034, Zhejiang, Peoples R ChinaHangzhou Normal Univ, Dept Math, Hangzhou 310034, Zhejiang, Peoples R China
Chen, H.
[1
]
Kose, H.
论文数: 0引用数: 0
h-index: 0
机构:
Ahi Evran Univ, Dept Math, Kirsehir, TurkeyHangzhou Normal Univ, Dept Math, Hangzhou 310034, Zhejiang, Peoples R China
Kose, H.
[2
]
论文数: 引用数:
h-index:
机构:
Kurtulmaz, Y.
[3
]
机构:
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310034, Zhejiang, Peoples R China
Strongly clean rings;
skew triangular matrix rings;
local rings;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A ring R is strongly clean provided that every element in R is the sum of an idempotent and a unit that commutate. Let T-n(R, sigma) be the skew triangular matrix ring over a local ring R where a is an endomorphism of R. We show that T-2(R, sigma) is strongly clean if and only if for any a is an element of 1 + J(R),b is an element of J(R), l(a) - r(sigma(b)) : R -> R is surjective. Further, T-3(R, sigma) is strongly clean if l(a) - r(sigma(b)), l(a) - r(sigma 2(b)) and l(b) - r(sigma(a)) are surjective for any a is an element of U(R), b is an element of J(R). The necessary condition for T-3(R, sigma) to be strongly clean is also obtained.