NEW CHARACTERIZATIONS OF RICCI CURVATURE ON RCD METRIC MEASURE SPACES

被引:3
作者
Han, Bang-Xian [1 ]
机构
[1] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
Bakry-Emery theory; curvature dimension condition; gradient estimate; heat flow; metric measure space; Ricci curvature; INEQUALITIES; TRANSPORT; BOUNDS;
D O I
10.3934/dcds.2018214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that on a large family of metric measure spaces, if the L-P-gradient estimate for heat flows holds for some p > 2, then the L-1-gradient estimate also holds. This result extends Savare's result on metric measure spaces, and provides a new proof to von Renesse-Sturm theorem on smooth metric measure spaces. As a consequence, we propose a new analysis object based on Gigli's measure-valued Ricci tensor, to characterize the Ricci curvature of RCD space in a local way. In the proof we adopt an iteration technique based on non-smooth Bakry-Emery theory, which is a new method to study the curvature dimension condition of metric measure spaces.
引用
收藏
页码:4915 / 4927
页数:13
相关论文
共 18 条
  • [1] Ambrosio L, 2016, J GEOM ANAL, V26, P24, DOI 10.1007/s12220-014-9537-7
  • [2] RIEMANNIAN RICCI CURVATURE LOWER BOUNDS IN METRIC MEASURE SPACES WITH σ-FINITE MEASURE
    Ambrosio, Luigi
    Gigli, Nicola
    Mondino, Andrea
    Rajala, Tapio
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (07) : 4661 - 4701
  • [3] METRIC MEASURE SPACES WITH RIEMANNIAN RICCI CURVATURE BOUNDED FROM BELOW
    Ambrosio, Luigi
    Gigli, Nicola
    Savare, Giuseppe
    [J]. DUKE MATHEMATICAL JOURNAL, 2014, 163 (07) : 1405 - 1490
  • [4] Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below
    Ambrosio, Luigi
    Gigli, Nicola
    Savare, Giuseppe
    [J]. INVENTIONES MATHEMATICAE, 2014, 195 (02) : 289 - 391
  • [5] Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces
    Ambrosio, Luigi
    Gigli, Nicola
    Savare, Giuseppe
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (03) : 969 - 996
  • [6] BAKRY-EMERY CURVATURE-DIMENSION CONDITION AND RIEMANNIAN RICCI CURVATURE BOUNDS
    Ambrsio, Luigi
    Gigli, Nicola
    Savare, Giuseppe
    [J]. ANNALS OF PROBABILITY, 2015, 43 (01) : 339 - 404
  • [7] [Anonymous], 2012, LONDON MATH SOC MONO
  • [8] Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
  • [9] Bouleau N., 1991, DIRICHLET FORMS ANAL, V14
  • [10] Introduction
    Gigli, Nicola
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 251 (1196) : 1 - +