Dual electrocatalytic heterostructures for efficient immobilization and conversion of polysulfides in Li-S batteries

被引:20
|
作者
Yang, Menghua [1 ]
Wang, Xuewei [1 ]
Wu, Jinfeng [1 ]
Tian, Yue [1 ]
Huang, Xingyu [1 ]
Liu, Ping [1 ]
Li, Xianyang [2 ]
Li, Xinru [2 ]
Liu, Xiaoyan [1 ]
Li, Hexing [1 ]
机构
[1] Shanghai Normal Univ, Coll Chem & Mat Sci, Educ Minist Key Lab Resource Chem, Joint Int Res Lab Resource Chem, Shanghai 200234, Peoples R China
[2] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
关键词
LITHIUM-SULFUR BATTERIES; TOTAL-ENERGY CALCULATIONS; METAL-ORGANIC FRAMEWORKS; KINETICS; ENHANCEMENT; NANOCAGES; CATHODE; SHELL; HOST;
D O I
10.1039/d1ta04534b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium sulfur (Li-S) batteries have been investigated as ideal candidates for future high-density energy storage systems with the advantages of abundant reserves, high energy density and competitive cost. The key issues are the severe shuttling of polysulfides and sluggish redox kinetics. Herein, we report a novel metal-organic framework-derived Co2P-ZnS/ZnS-C nanocomposite constructed from inner Co2P-ZnS and outer ZnS-C heterostructures. Both the experimental results and theoretical calculations demonstrated that these dual electrocatalytic heterostructures enabled strong affinity with polysulfides and facilitated the reaction kinetics. Meanwhile, the hollow carbon polyhedron provided fast electron/ion transfer channels and effectively buffered volume expansion during cycling. As anticipated, a high initial capacity of 1503 mA h g(-1) was achieved at 0.2C with Co-Zn/Zn-C/S as a cathode, together with excellent stability after 500 cycles at 1C. Even a high reversible capacity of 540 mA h g(-1) was achieved at 1C after 200 cycles under an elevated sulfur loading of 3.65 mg cm(-2). This work presents a new strategy for designing dual electrocatalytic hosts for immobilization and conversion of polysulfides, which may offer more opportunities as cathodes in stable Li-S batteries with high energy density.
引用
收藏
页码:18477 / 18487
页数:11
相关论文
共 50 条
  • [1] Selenium vacancies enable efficient immobilization and bidirectional conversion acceleration of lithium polysulfides for advanced Li-S batteries
    Li, Yuanchang
    Zhou, Zhenfang
    Li, Yong
    Zhang, Zhonghua
    Guo, Xiaosong
    Liu, Jing
    Mao, Changming
    Li, Zhenjiang
    Li, Guicun
    NANO RESEARCH, 2022, 15 (08) : 7234 - 7246
  • [2] Selenium vacancies enable efficient immobilization and bidirectional conversion acceleration of lithium polysulfides for advanced Li-S batteries
    Yuanchang Li
    Zhenfang Zhou
    Yong Li
    Zhonghua Zhang
    Xiaosong Guo
    Jing Liu
    Changming Mao
    Zhenjiang Li
    Guicun Li
    Nano Research, 2022, 15 (8) : 7234 - 7246
  • [3] Rational design of dual catalysts towards efficient polysulfides conversion for high performance Li-S batteries
    Gu, Shaonan
    Liu, Bingjie
    Jiang, Yue
    Li, Hongda
    Wang, Yinan
    Gao, Yinglu
    Ren, Yongqiang
    Zhou, Guowei
    JOURNAL OF POWER SOURCES, 2022, 545
  • [4] Co/CoSe Junctions Enable Efficient and Durable Electrocatalytic Conversion of Polysulfides for High-Performance Li-S Batteries
    Wen, Yang
    Shen, Zihan
    Hui, Junfeng
    Zhang, Huigang
    Zhu, Qingshan
    ADVANCED ENERGY MATERIALS, 2023, 13 (20)
  • [5] Long-life Li-S batteries based on enabling the immobilization and catalytic conversion of polysulfides
    Zhang, Yupeng
    Gu, Rong
    Zheng, Shuai
    Liao, KeXuan
    Shi, Penghui
    Fan, Jinchen
    Xu, QunJie
    Min, YuLin
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (38) : 21747 - 21758
  • [6] Efficient Trapping and Catalytic Conversion of Polysulfides by VS4 Nanosites for Li-S Batteries
    Wang, Sizhe
    Chen, Haiyuan
    Liao, Jiaxuan
    Sun, Qian
    Zhao, Feipeng
    Luo, Jing
    Lin, Xiaoting
    Niu, Xiaobin
    Wu, Mengqiang
    Li, Ruying
    Sun, Xueliang
    ACS ENERGY LETTERS, 2019, 4 (03): : 755 - 762
  • [7] Efficient regulation of polysulfides by CoP/C microspheres for enhancing conversion kinetics in Li-S batteries
    Li, Zheng
    Ma, Yujie
    Liu, Qingli
    Ye, Jiajia
    Wang, Zifan
    Xia, Guang
    MATERIALS LETTERS, 2025, 386
  • [8] A rational design of titanium-based heterostructures as electrocatalyst for boosted conversion kinetics of polysulfides in Li-S batteries
    Zhang, Han
    Zhang, Yiwen
    Li, Ling
    Zhou, Hongxu
    Wang, Mingchi
    Li, Lixiang
    Geng, Xin
    An, Baigang
    Sun, Chengguo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 633 : 432 - 440
  • [9] Electrocatalysis of sulfur and polysulfides in Li-S batteries
    Deng, Chao
    Wang, Zhuowen
    Feng, Luluan
    Wang, Shengping
    Yu, Jingxian
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (38) : 19704 - 19728
  • [10] Catalytic Effects in the Cathode of Li-S Batteries: Accelerating polysulfides redox conversion
    Zhang, Teng
    Zhang, Long
    Zhao, Lina
    Huang, Xiaoxiao
    Hou, Yanglong
    ENERGYCHEM, 2020, 2 (04)