Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast

被引:57
|
作者
Booth, Gregory T. [1 ]
Wang, Isabel X. [2 ]
Cheung, Vivian G. [2 ]
Lis, John T. [1 ]
机构
[1] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
[2] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
RNA-POLYMERASE-II; GENOME-WIDE ANALYSIS; SCHIZOSACCHAROMYCES-POMBE; SACCHAROMYCES-CEREVISIAE; BIDIRECTIONAL PROMOTERS; GENE-REGULATION; TERMINATION; INITIATION; MECHANISMS; BINDING;
D O I
10.1101/gr.204578.116
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Complex regulation of gene expression in mammals has evolved from simpler eukaryotic systems, yet the mechanistic features of this evolution remain elusive. Here, we compared the transcriptional landscapes of the distantly related budding and fission yeast. We adapted the Precision Run-On sequencing (PRO-seq) approach to map the positions of RNA polymerase active sites genome-wide in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Additionally, we mapped preferred sites of transcription initiation in each organism using PRO-cap. Unexpectedly, we identify a pause in early elongation, specific to S. pombe, that requires the conserved elongation factor subunit Spt4 and resembles promoter-proximal pausing in metazoans. PRO-seq profiles in strains lacking Spt4 reveal globally elevated levels of transcribing RNA Polymerase II (Pol II) within genes in both species. Messenger RNA abundance, however, does not reflect the increases in Pol II density, indicating a global reduction in elongation rate. Together, our results provide the first base-pair resolution map of transcription elongation in S. pombe and identify divergent roles for Spt4 in controlling elongation in budding and fission yeast.
引用
收藏
页码:799 / 811
页数:13
相关论文
共 50 条
  • [21] Fission yeast Cactin restricts telomere transcription and elongation by controlling Rap1 levels
    Lorenzi, Luca E.
    Bah, Amadou
    Wischnewski, Harry
    Shchepachev, Vadim
    Soneson, Charlotte
    Santagostino, Marco
    Azzalin, Claus M.
    EMBO JOURNAL, 2015, 34 (01): : 115 - 129
  • [22] Lozl, a zinc-responsive transcription factor from fission yeast
    Bird, Amanda
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [23] Fission Yeast Hotspot Sequence Motifs Are Also Active in Budding Yeast
    Steiner, Walter W.
    Steiner, Estelle M.
    PLOS ONE, 2012, 7 (12):
  • [24] THE TOMATO NIA GENE PROMOTER FUNCTIONS IN FISSION YEAST BUT NOT IN BUDDING YEAST
    TRUONG, HN
    CABOCHE, M
    DANIELVEDELE, F
    PLANT MOLECULAR BIOLOGY, 1992, 20 (02) : 361 - 364
  • [25] Transcription regulation of the α-glucanase gene agn1 by cell separation transcription factor Ace2p in fission yeast
    Dekker, Nick
    de Haan, Annett
    Hochstenbach, Frans
    FEBS LETTERS, 2006, 580 (13): : 3099 - 3106
  • [26] Molecular basis for telomere repeat divergence in budding yeast
    Förstemann, K
    Lingner, J
    MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (21) : 7277 - 7286
  • [27] Analysis of the splicing machinery in fission yeast:: a comparison with budding yeast and mammals
    Käufer, NF
    Potashkin, J
    NUCLEIC ACIDS RESEARCH, 2000, 28 (16) : 3003 - 3010
  • [28] Transcription elongation factor S-II is not required for transcription-coupled repair in yeast
    R. A. Verhage
    J. Heyn
    P. van de Putte
    J. Brouwer
    Molecular and General Genetics MGG, 1997, 254 : 284 - 290
  • [29] Transcription elongation factor S-II is not required for transcription-coupled repair in yeast
    Verhage, RA
    Heyn, J
    vandePutte, P
    Brouwer, J
    MOLECULAR & GENERAL GENETICS, 1997, 254 (03): : 284 - 290
  • [30] Reliable imaging of ATP in living budding and fission yeast
    Takaine, Masak
    Ueno, Masaru
    Kitamura, Kenji
    Imamura, Hiromi
    Yoshida, Satoshi
    JOURNAL OF CELL SCIENCE, 2019, 132 (08)