The High-Frequency Tidal Response of Ocean Worlds: Application to Europa and Ganymede

被引:11
作者
Hay, H. C. F. C. [1 ]
Matsuyama, I. [2 ]
Pappalardo, R. T. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
基金
美国国家航空航天局;
关键词
tides; icy satellites; Europa; Ganymede; planetary interiors; SUBSURFACE OCEANS; LOVE NUMBERS; ENERGY-DISSIPATION; ICY SATELLITES; TIDES; HEAT; CONSTRAINTS; ENCELADUS; FRICTION; CALLISTO;
D O I
10.1029/2021JE007064
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Europa and Ganymede, whose liquid water oceans are of uncertain thickness, are subject to tidal forces across a broad frequency spectrum. Tidal deformation is inherently frequency dependent, an effect which is enhanced when a subsurface ocean is present. We model the tidal response of Europa and Ganymede, taking into account ocean dynamics and the viscoelastic coupling to the ice shell. Tidal deformation at high frequencies - a result of moon-moon interactions - is resonantly amplified by ocean dynamics. We find the corresponding tidal Love numbers to be extremely sensitive to ocean thickness and weakly sensitive to ice shell thickness, shear modulus, and viscosity. Measuring these high-frequency deformations would provide a unique determination of ocean thickness, though the minimum sensitivity required to detect the relevant deformation (0.1 mm, 2 nGal) makes this an extreme challenge. Detection of a large signal on the order of centimeters would only be possible if the ocean was tuned to a particular thickness, which would suggest that moon-moon tides play a role in the thermal/orbital evolution of the moon. Scaling laws are also derived that predict the resonant enhancement of tidal Love numbers and associated tidal dissipation in the ocean and ice shell.
引用
收藏
页数:23
相关论文
共 57 条
  • [1] Gravitational constraints on the internal structure of Ganymede
    Anderson, JD
    Lau, EL
    Sjogren, WL
    Schubert, G
    Moore, WB
    [J]. NATURE, 1996, 384 (6609) : 541 - 543
  • [2] Arfken G.B., 1999, Mathematical Methods for Physicists, V4th, P2, DOI DOI 10.1119/1.19217
  • [3] Thin elastic shells with variable thickness for lithospheric flexure of one-plate planets
    Beuthe, Mikael
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 172 (02) : 817 - 841
  • [4] Crustal control of dissipative ocean tides in Enceladus and other icy moons
    Beuthe, Mikael
    [J]. ICARUS, 2016, 280 : 278 - 299
  • [5] Tidal Love numbers of membrane worlds: Europa, Titan, and Co.
    Beuthe, Mikael
    [J]. ICARUS, 2015, 258 : 239 - 266
  • [6] Julia: A Fresh Approach to Numerical Computing
    Bezanson, Jeff
    Edelman, Alan
    Karpinski, Stefan
    Shah, Viral B.
    [J]. SIAM REVIEW, 2017, 59 (01) : 65 - 98
  • [7] Ganymede's gravity, tides and rotational state from JUICE's 3GM experiment simulation
    Cappuccio, P.
    Hickey, A.
    Durante, D.
    Di Benedetto, M.
    Iess, L.
    De Marchi, F.
    Plainaki, C.
    Milillo, A.
    Mura, A.
    [J]. PLANETARY AND SPACE SCIENCE, 2020, 187
  • [8] Updated Europa gravity field and interior structure from a reanalysis of Galileo tracking data
    Casajus, Luis Gomez
    Zannoni, Marco
    Modenini, Dario
    Tortora, Paolo
    Nimmo, Francis
    Van Hoolst, Tim
    Buccino, Dustin
    Oudrhiri, Kamal
    [J]. ICARUS, 2021, 358
  • [9] Tidal heating in icy satellite oceans
    Chen, E. M. A.
    Nimmo, F.
    Glatzmaier, G. A.
    [J]. ICARUS, 2014, 229 : 11 - 30
  • [10] de Marchi F., 2021, 2021 FALL M, P13