Crack growth behaviour of P92 steel under creep and creep-fatigue conditions

被引:12
|
作者
Shi, K. X. [1 ]
Lin, F. S. [1 ]
Wan, H. B. [1 ]
Wang, Y. F. [1 ]
机构
[1] Shanghai Power Equipment Res Inst, Shanghai 200240, Peoples R China
关键词
Crack growth; Creep; Creep-fatigue; P92; Hold time; C*; Stress intensity factor;
D O I
10.1179/0960340914Z.00000000050
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High temperature creep and creep-fatigue crack growth tests were carried out on standard compact specimens machined from ASME P92 steel pipe. The effects of various loading conditions on crack growth behaviours were investigated. Crack initiation time was found to decrease with the increasing initial stress intensity factor under creep condition and further to decrease by the introduction of fatigue condition. For creep test, the crack growth rate can be well characterised by the facture mechanics parameter C*. For creep-fatigue test, the crack growth behaviour is dominated by the cycle dependent fatigue process when the hold time is shorter, but it becomes dominated by the time dependent creep process when the hold time becomes longer.
引用
收藏
页码:343 / 347
页数:5
相关论文
共 50 条
  • [31] Cyclic deformation behaviors and damage mechanisms in P92 steel under creep-fatigue loading: Effects of hold condition and oxidation
    Wang, Kang-Kang
    Wen, Jian-Feng
    Wang, Run-Zi
    Ye, Ting
    Wang, Ji
    Tan, Jian-Ping
    Chen, Hao-Feng
    Zhang, Xian-Cheng
    Tu, Shan-Tung
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 187
  • [32] Evaluation of Creep-Fatigue Crack Growth for Grade 91 Steel Wide Plate
    Lee, Hyeong-Yeon
    Kim, Jong-Bum
    Lee, Jae-Han
    PRICM 7, PTS 1-3, 2010, 654-656 : 528 - 531
  • [33] A Novel Creep-Fatigue Life Prediction Model for P92 Steel on the Basis of Cyclic Strain Energy Density
    Dongmei Ji
    Jianxing Ren
    Lai-Chang Zhang
    Journal of Materials Engineering and Performance, 2016, 25 : 4868 - 4874
  • [34] A Novel Creep-Fatigue Life Prediction Model for P92 Steel on the Basis of Cyclic Strain Energy Density
    Ji, Dongmei
    Ren, Jianxing
    Zhang, Lai-Chang
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2016, 25 (11) : 4868 - 4874
  • [35] Creep-fatigue crack growth behavior of a structure with crack like defects at the welds
    Hyeong-Yeon Lee
    Seok-Hoon Kim
    Jae-Han Lee
    Byung-Ho Kim
    Journal of Mechanical Science and Technology, 2006, 20 : 2136 - 2146
  • [36] Creep-fatigue crack growth behavior of a structure with crack like defects at the welds
    Lee, Hyeong-Yeon
    Kim, Seok-Hoon
    Lee, Jae-Han
    Kim, Byung-Ho
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2006, 20 (12) : 2136 - 2146
  • [37] Creep-Fatigue Crack Growth in Power Plant Steels
    Holdsworth, Stuart
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2016, 69 (02) : 353 - 358
  • [38] Creep-Fatigue Crack Growth in Power Plant Steels
    Stuart Holdsworth
    Transactions of the Indian Institute of Metals, 2016, 69 : 353 - 358
  • [39] Effect of temperature on fatigue crack growth in P92 steel
    Lim, BS
    Jeong, CS
    Keum, YT
    METALS AND MATERIALS INTERNATIONAL, 2003, 9 (06) : 543 - 547
  • [40] Effect of temperature on fatigue crack growth in P92 steel
    Byeong Soo Lim
    Chan Seo Jeong
    Young Tag Keum
    Metals and Materials International, 2003, 9 : 543 - 547