THE TRACE FORMULA IN BANACH SPACES

被引:2
|
作者
Johnson, W. B. [1 ]
Szankowski, A. [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
基金
美国国家科学基金会;
关键词
APPROXIMATION PROPERTY;
D O I
10.1007/s11856-014-1107-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical result of Grothendieck and Lidskii says that the trace formula (that the trace of a nuclear operator is the sum of its eigenvalues provided the sequence of eigenvalues is absolutely summable) holds in Hilbert spaces. In 1988, Pisier proved that weak Hilbert spaces satisfy the trace formula. We exhibit a much larger class of Banach spaces, called Gamma-spaces, that satisfy the trace formula. A natural class of asymptotically Hilbertian spaces, including some spaces that are l(2) sums of finite-dimensional spaces, are Gamma-spaces. One consequence is that the direct sum of two Gamma-spaces need not be a Gamma-space.
引用
收藏
页码:389 / 404
页数:16
相关论文
共 50 条