机构:
Univ Bordeaux 1, CNRS, Inst Math Bordeaux, Talence, FranceUniv Bordeaux 1, CNRS, Inst Math Bordeaux, Talence, France
Boutonnet, Remi
[1
]
Chifan, Ionut
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Math, Iowa City, IA 52242 USAUniv Bordeaux 1, CNRS, Inst Math Bordeaux, Talence, France
Chifan, Ionut
[2
]
Ioana, Adrian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Romanian Acad IMAR, Inst Math, Bucharest, RomaniaUniv Bordeaux 1, CNRS, Inst Math Bordeaux, Talence, France
Ioana, Adrian
[3
,4
]
机构:
[1] Univ Bordeaux 1, CNRS, Inst Math Bordeaux, Talence, France
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[4] Romanian Acad IMAR, Inst Math, Bucharest, Romania
We prove that there exist uncountably many, separable II1,factors whose ultrapowers (with respect,to arbitrary ultrafilters) are nonisomorphic. In fact, we prove that the families of nonisomorphic II1 factors originally introduced by McDuff are such examples. This entails the existence of a continuum of nonelementarily equivalent II1 factors, thus settling a well-known open problem in the continuous model theory of operator algebras.