Methanol adsorption and dissociation on TiO2(110) from first principles calculations

被引:103
作者
Sanchez de Armas, R. [1 ]
Oviedo, J. [1 ]
San Miguel, M. A. [1 ]
Sanz, J. F. [1 ]
机构
[1] Univ Seville, Dept Phys Chem, E-41012 Seville, Spain
关键词
D O I
10.1021/jp0717701
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work we report on theoretical calculations of methanol adsorption and dissociation on the stoichiometric and defective TiO2(110) surface. The periodic implementation of density functional theory (DFT) with plane waves and pseudopotentials was employed. A supercell made of 4 x 1 unit cells was used to represent the surface, which corresponds to methanol coverage of 0.25 ML. The defective surface was modeled by removing one bridging oxygen from the outermost layer. Several adsorption sites were explored through both static and molecular dynamics calculations. The most stable adsorption site on the defective surface is with the molecule directly adsorbed onto the vacancy, whereas adsorption on titania resembles the stoichiometric case. Our estimated adsorption energies are found to be in agreement with the features observed in previous experimental desorption data. One of the main aims of this study was to determine whether methanol could dissociate on the stoichiometric surface. From static calculations we find that both the molecular and the dissociated state are almost degenerate. In addition, molecular dynamics calculations show that the transition barrier between the two species is small. On the other hand, dissociation on defects is thermodynamically favorable by 0.5 eV. However, dynamic calculations show that in this case the conversion from the molecular to the dissociated state is not straightforward. Implications to these findings are discussed within the text.
引用
收藏
页码:10023 / 10028
页数:6
相关论文
共 50 条
[41]   First-Principles Study of Methanol Adsorption and Dissociation Reactivity on the Anatase TiO2(101) Surface: The Effect of Co doping and Oxygen Vacancy [J].
Hui Li ;
Wenqing Sun ;
Zhonglin Bi ;
Xing Yuan ;
Jing Zhang ;
Yang Wu .
Catalysis Letters, 2023, 153 :104-113
[42]   First-Principles Study of Methanol Adsorption and Dissociation Reactivity on the Anatase TiO2(101) Surface: The Effect of Co doping and Oxygen Vacancy [J].
Li, Hui ;
Sun, Wenqing ;
Bi, Zhonglin ;
Yuan, Xing ;
Zhang, Jing ;
Wu, Yang .
CATALYSIS LETTERS, 2023, 153 (01) :104-113
[43]   Adsorption of Au atoms on stoichiometric and reduced TiO2(110) rutile surfaces:: a first principles study [J].
Wang, Y ;
Hwang, GS .
SURFACE SCIENCE, 2003, 542 (1-2) :72-80
[44]   First-principles study of the adsorption of CO on TiO2(110) -: art. no. 045419 [J].
Yang, ZX ;
Wu, RQ ;
Zhang, QM ;
Goodman, DW .
PHYSICAL REVIEW B, 2001, 63 (04)
[45]   First-Principles Study of Formaldehyde Adsorption on TiO2 Rutile (110) and Anatase (001) Surfaces [J].
Liu, Huazhong ;
Wang, Xiao ;
Pan, Chunxu ;
Liew, K. M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14) :8044-8053
[46]   The adsorption and dissociation of multilayer CH3OH on TiO2 (110) [J].
Wang, Ruimin ;
Fan, Hongjun .
SCIENCE CHINA-CHEMISTRY, 2015, 58 (04) :614-619
[47]   Influence of strain on water adsorption and dissociation on rutile TiO2(110) surface [J].
Yang, Long ;
Shu, Da-Jun ;
Li, Shao-Chun ;
Wang, Mu .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (22) :14833-14839
[48]   The adsorption and dissociation of multilayer CH3OH on TiO2 (110) [J].
Ruimin Wang ;
Hongjun Fan .
Science China Chemistry, 2015, 58 :614-619
[49]   The Adsorption Geometry and Electronic Structure of Organic Dye Molecule on TiO2(101) Surface from First Principles Calculations [J].
Niu, Mang .
2016 INTERNATIONAL CONFERENCE ON BIOMATERIALS, NANOMATERIALS AND COMPOSITE MATERIALS (CBNCM 2016), 2017, 88
[50]   Theoretical study of the adsorption and dissociation of azobenzene on the rutile TiO2(110) surface [J].
Prates Ramalho, J. P. ;
Illas, Francesc .
CHEMICAL PHYSICS LETTERS, 2011, 501 (4-6) :379-384