Sub-Gbps key rate four-state continuous-variable quantum key distribution within metropolitan area

被引:64
作者
Wang, Heng [1 ]
Li, Yang [1 ]
Pi, Yaodi [1 ]
Pan, Yan [1 ]
Shao, Yun [1 ]
Ma, Li [1 ]
Zhang, Yichen [2 ]
Yang, Jie [1 ]
Zhang, Tao [1 ]
Huang, Wei [1 ]
Xu, Bingjie [1 ]
机构
[1] Inst Southwestern Commun, Sci & Technol Commun Secur Lab, Chengdu 610041, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
51;
D O I
10.1038/s42005-022-00941-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Continuous-variable quantum key distribution (CVQKD) has potential advantages of high secret key rate, which is very suitable for high-speed metropolitan network application. However, the secret key rates of the reported CVQKD systems are only a few Mbps over typical transmission distance so far. Here, we address the fundamental experimental problems and demonstrate a single-carrier four-state CVQKD with sub-Gbps key rate within metropolitan area. In the demonstrated four-state CVQKD using local local oscillator, an ultra-low level of excess noise is obtained and a high efficient post-processing setup is designed for practically extracting the final secure keys. Thus, the achieved secret key rates are 190.54 Mbps, 137.76 Mbps and 52.48 Mbps using linear channel assuming security analysis method and 233.87 Mbps, 133.6 Mbps and 21.53 Mbps using semidefinite programming security analysis method over transmission distances of 5 km, 10 km and 25 km, respectively. This result increases the asymptotic secret key rate to sub-Gbps level, which is sufficient to achieve the one-time pad cryptographic task. Moreover, our work shows the road for future high-rate and large-scale CVQKD deployment in secure broadband metropolitan and access networks. With the continuous development of metropolitan broadband and network, the need of secure and faster transmission also increases. The authors demonstrate a single-carrier four-state continuous-variable quantum key distribution (CVQKD) with sub-Gbps key rate within metropolitan area and secure transmissions up to 25 km
引用
收藏
页数:10
相关论文
共 51 条
[2]   Explicit asymptotic secret key rate of continuous-variable quantum key distribution with an arbitrary modulation [J].
Denys, Aurelie ;
Brown, Peter ;
Leverrier, Anthony .
QUANTUM, 2021, 5
[3]   Quantum privacy amplification and the security of quantum cryptography over noisy channels [J].
Deutsch, D ;
Ekert, A ;
Jozsa, R ;
Macchiavello, C ;
Popescu, S ;
Sanpera, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (13) :2818-2821
[4]   Wavelength Division Multiplexing of 194 Continuous Variable Quantum Key Distribution Channels [J].
Eriksson, Tobias A. ;
Luis, Ruben S. ;
Puttnam, Benjamin J. ;
Rademacher, Georg ;
Fujiwara, Mikio ;
Awaji, Yoshinari ;
Furukawa, Hideaki ;
Wada, Naoya ;
Takeoka, Masahiro ;
Sasaki, Masahide .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (08) :2214-2218
[5]   Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels [J].
Eriksson, Tobias A. ;
Hirano, Takuya ;
Puttnam, Benjamin J. ;
Rademacher, Georg ;
Luis, Ruben S. ;
Fujiwara, Mikio ;
Namiki, Ryo ;
Awaji, Yoshinari ;
Takeoka, Masahiro ;
Wada, Naoya ;
Sasaki, Masahide .
COMMUNICATIONS PHYSICS, 2019, 2 (1)
[6]   Quantum secured gigabit optical access networks [J].
Froehlich, Bernd ;
Dynes, James F. ;
Lucamarini, Marco ;
Sharpe, Andrew W. ;
Tam, Simon W. -B. ;
Yuan, Zhiliang ;
Shields, Andrew J. .
SCIENTIFIC REPORTS, 2015, 5
[7]   A quantum access network [J].
Froehlich, Bernd ;
Dynes, James F. ;
Lucamarini, Marco ;
Sharpe, Andrew W. ;
Yuan, Zhiliang ;
Shields, Andrew J. .
NATURE, 2013, 501 (7465) :69-+
[8]   Asymptotic Security of Continuous-Variable Quantum Key Distribution with a Discrete Modulation [J].
Ghorai, Shouvik ;
Grangier, Philippe ;
Diamanti, Eleni ;
Leverrier, Anthony .
PHYSICAL REVIEW X, 2019, 9 (02)
[9]   Quantum key distribution using gaussian-modulated coherent states [J].
Grosshans, F ;
Van Assche, G ;
Wenger, J ;
Brouri, R ;
Cerf, NJ ;
Grangier, P .
NATURE, 2003, 421 (6920) :238-241
[10]   Continuous variable quantum cryptography using coherent states [J].
Grosshans, F ;
Grangier, P .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4