Nanorod β-Ga2O3 semiconductor modified activated carbon as catalyst for improving power generation of microbial fuel cell

被引:9
|
作者
Li, Xiujuan [1 ,2 ,3 ]
Liu, Di [1 ,2 ,3 ]
Mo, Xiaoping [1 ,2 ,3 ]
Li, Kexun [1 ,2 ,3 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn, Tianjin 300071, Peoples R China
[2] Nankai Univ, MOE Key Lab Pollut Proc & Environm Criteria, Tianjin 300071, Peoples R China
[3] Tianjin Key Lab Environm Remediat & Pollut Contro, Tianjin 300071, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会;
关键词
beta-Ga2O3; Semiconductor; Oxygen vacancy; Oxygen reduction reaction; Microbial fuel cells; OXYGEN REDUCTION REACTION; AIR-CATHODE; HIGH-PERFORMANCE; DIFFUSION LAYER; LOW-COST; MORPHOLOGY; ANODE; GA2O3; NANOSTRUCTURES; PHOTOCATALYST;
D O I
10.1007/s10008-019-04377-4
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nanorod monoclinic beta-Ga2O3 semiconductor, synthesized by a facile hydrothermal method, was firstly researched as a catalyst to modify activated carbon air cathode in microbial fuel cells (MFCs). The maximum power density of modified MFC reaching 1843 +/- 40 mW m(-2) was 3 times higher than the control. The Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), and X-ray diffraction (XRD) results revealed the larger surface area and porous structure could provide more active sites to improve the performance of MFCs. The result of X-ray photoelectron spectroscopy (XPS) confirmed that plenty of oxygen vacancy existed in the synthesized beta-Ga2O3. Tafel curve and rotating disk electrode (RDE) results illustrated the high exchange current density of beta-Ga2O3 and the four-electron pathway at the cathode during the oxygen reduction reaction (ORR), respectively. The cathode modified with beta-Ga2O3 displayed excellent improvement towards ORR and therefore improved the performance of MFCs.
引用
收藏
页码:2843 / 2852
页数:10
相关论文
共 50 条
  • [42] Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell
    Mohamed, Hend Omar
    Obaid, M.
    Poo, Kyung-Min
    Abdelkareem, Mohammad Ali
    Talas, Sawsan Abo
    Fadali, Olfat A.
    Kim, Hak Yong
    Chae, Kyu-Jung
    CHEMICAL ENGINEERING JOURNAL, 2018, 349 : 800 - 807
  • [43] Ga2O3(Gd2O3)/GaAs power MOSFETs
    Electron. Lett., 8 (667-669):
  • [44] Ga2O3(Gd2O3)/GaAs power MOSFETs
    Wang, YC
    Hong, M
    Kuo, JM
    Mannaerts, JP
    Tsai, HS
    Kwo, J
    Krajewski, JJ
    Chen, YK
    Cho, AY
    ELECTRONICS LETTERS, 1999, 35 (08) : 667 - 669
  • [45] Growth and Property of In:Ga2O3 Oxide Semiconductor Single Crystal
    Tang Hui-Li
    Wu Qing-Hui
    Luo Ping
    Wang Qing-Guo
    Xu Jun
    JOURNAL OF INORGANIC MATERIALS, 2017, 32 (06) : 621 - 624
  • [46] Evaluation of Fe-βGa2O3 for Photoconductive Semiconductor Switching
    Dowling, Karen M.
    Chatterjee, Bikramjit
    Ghandiparsi, Soroush
    Shao, Qinghui
    Varley, Joel
    Schneider, Joseph D.
    Chapin, Caitlin
    Gottlieb, Miranda S.
    Leos, Laura
    Sword, Michael
    Harrison, Sara
    Voss, Lars
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (03) : 1535 - 1540
  • [47] Influence of Silver as a Catalyst on the Growth of β-Ga2O3 Nanowires on GaAs
    Alhalaili, Badriyah
    Mao, Howard
    Dryden, Daniel M.
    Cansizoglu, Hilal
    Bunk, Ryan James
    Vidu, Ruxandra
    Woodall, Jerry
    Islam, M. Saif
    MATERIALS, 2020, 13 (23) : 1 - 15
  • [48] Engineering Charge Separation in α-Ga2O3 Nanorod Arrays for Photoelectrochemical UV Detection
    Xu, Kaicheng
    Gao, Zhujun
    Tong, Jiaming
    Zhi, Ting
    Wang, Rui
    Hu, Shanwen
    Chen, Zhouyu
    Fang, Haoyu
    Wang, Jin
    Chen, Dunjun
    Yang, Guofeng
    Zhang, Rong
    Xue, Junjun
    ACS APPLIED NANO MATERIALS, 2024, 7 (14) : 16018 - 16030
  • [49] The growth behavior of β-Ga2O3 nanowires on the basis of catalyst size
    Choi, Kyo Hong
    Cho, Kwon Koo
    Cho, Gyu Bong
    Ahn, Hyo Jun
    Kim, Ki Won
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (04) : 1195 - 1200
  • [50] Synthesis and Characterization of β-Ga2O3 Nanorod Array Clumps by Chemical Vapor Deposition
    Shi, Feng
    Wei, Xiaofeng
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (11) : 8481 - 8486