Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics

被引:204
作者
Huang, Yu-Fong [1 ]
Chiueh, Pei-Te [1 ]
Kuan, Wen-Hui [2 ]
Lo, Shang-Lien [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Environm Engn, 71 Chou Shan Rd, Taipei 106, Taiwan
[2] Ming Chi Univ Technol, Dept Safety Hlth & Environm Engn, 84 Gong Juan Rd, New Taipei 243, Taiwan
关键词
Microwave pyrolysis; Lignocellulosic biomass; Reaction kinetics; ASSISTED PYROLYSIS; BIOFUELS; ENERGY; OIL; TORREFACTION; COMBUSTION; FUELS;
D O I
10.1016/j.energy.2016.01.088
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lignocellulosic biomass is an abundant renewable resource and can be efficiently converted into bioenergy and green materials by using microwave pyrolysis. In this study, microwave pyrolysis of seven biomass feedstocks (corn stover, rice straw, rice husk, sugarcane bagasse, sugarcane peel, coffee grounds, and bamboo) was studied. The maximum temperature of microwave pyrolysis was highly correlated with the combustible content of the feedstocks. The influence of microwave power level on both maximum temperature and heating rate was substantial. Either maximum temperature or heating rate had a linear relationship with microwave power level. However, there was a breakpoint at a power level of 250 W. Compared with conventional pyrolysis, microwave pyrolysis was faster and needed less input energy. Microwave pyrolysis provided higher weight losses than conventional pyrolysis, and this difference was more substantial at lower temperatures. Kinetic parameters of microwave pyrolysis at lower and higher microwave power levels were different. Reaction rates at higher microwave power levels can be higher than those at lower power levels by approximately one order of magnitude. Compared with conventional pyrolysis, the rate constant of microwave pyrolysis was much higher, and its activation energy and pre-exponential factor were much lower. (c) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 36 条
[1]   Microwave technology for energy-efficient processing of waste [J].
Appleton, TJ ;
Colder, RI ;
Kingman, SW ;
Lowndes, IS ;
Read, AG .
APPLIED ENERGY, 2005, 81 (01) :85-113
[2]   Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating [J].
Chen, Wei-Hsin ;
Ye, Song-Ching ;
Sheen, Herng-Kuang .
BIORESOURCE TECHNOLOGY, 2012, 118 :195-203
[3]   Crop residues as raw materials for biorefinery systems - A LCA case study [J].
Cherubini, Francesco ;
Ulgiati, Sergio .
APPLIED ENERGY, 2010, 87 (01) :47-57
[4]   KINETIC PARAMETERS FROM THERMOGRAVIMETRIC DATA [J].
COATS, AW ;
REDFERN, JP .
NATURE, 1964, 201 (491) :68-&
[5]   Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating [J].
Domínguez, A ;
Menéndez, JA ;
Inguanzo, M ;
Pís, JJ .
BIORESOURCE TECHNOLOGY, 2006, 97 (10) :1185-1193
[6]   Kinetics study on conventional and microwave pyrolysis of moso bamboo [J].
Dong, Qing ;
Xiong, Yuanquan .
BIORESOURCE TECHNOLOGY, 2014, 171 :127-131
[7]   Microwave energy for mineral treatment processes - a brief review [J].
Haque, KE .
INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 1999, 57 (01) :1-24
[8]   Biomass recalcitrance: Engineering plants and enzymes for biofuels production [J].
Himmel, Michael E. ;
Ding, Shi-You ;
Johnson, David K. ;
Adney, William S. ;
Nimlos, Mark R. ;
Brady, John W. ;
Foust, Thomas D. .
SCIENCE, 2007, 315 (5813) :804-807
[9]   A study on experimental characteristic of microwave-assisted pyrolysis of microalgae [J].
Hu, Zhifeng ;
Ma, Xiaoqian ;
Chen, Chunxiang .
BIORESOURCE TECHNOLOGY, 2012, 107 :487-493
[10]   Microwave torrefaction of rice straw and pennisetum [J].
Huang, Y. F. ;
Chen, W. R. ;
Chiueh, P. T. ;
Kuan, W. H. ;
Lo, S. L. .
BIORESOURCE TECHNOLOGY, 2012, 123 :1-7