Application of Chemical Exchange Saturation Transfer (CEST) in neuroimaging

被引:9
作者
El Mamoune, Kahina [1 ,2 ,5 ]
Barantin, Laurent [4 ,5 ]
Adriaensen, Hans [1 ,3 ,5 ]
Tillet, Yves [1 ,5 ]
机构
[1] Univ Tours, Ctr INRAE Val Loire, UMR 085 INRAE,CNRS 7247, Physiol Reprod & Comportements,IFCE, F-37380 Nouzilly, France
[2] Siemens Healthcare SAS, St Denis, France
[3] Univ Tours, IFCE, Ctr INRAE Val Loire, CIRE UMR 085 INRAE,CNRS 7247, F-37380 Nouzilly, France
[4] Univ Tours, IBrain, UMR 1253 INSERM, 10 Bd Tonnelle, F-37032 Tours, France
[5] Univ Tours, SFR FED 4226, 2 Bd Tonnelle, F-37032 Tours, France
关键词
MRI; In vivo neuroimaging; CEST contrast agent; Chemical neuroanatomy; BLOOD-BRAIN-BARRIER; IN-VIVO; CONTRAST AGENTS; MRI CONTRAST; MOUSE MODEL; ENDOGENOUS PROTEIN; GLUTAMATE; CREATINE; METABOLISM; HEMORRHAGE;
D O I
10.1016/j.jchemneu.2021.101944
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Since the early eighties MRI has become the most powerful technic for in-vivo imaging particularly in the field of brain research. This non-invasive method allows acute anatomical observations of the living brain similar to postmortem dissected tissues. However, one of the main limitation of MRI is that it does not make possible the neurochemical identification of the tissues conversely to positron emission tomography scanner which can provide a specific molecular characterization of tissue, in spite of poor anatomical definition. To gain neurochemical information using MRI, new categories of contrast agents were developed from the beginning of the 2000's, particularly using the chemical-exchange saturation transfer (CEST) method. This method induces a significant change in the magnitude of the water proton signal and allows the detection of specific molecules within the tissues like sugars, amino acids, transmitters, and nucleosides. This short review presents several CEST contrast agents and their recent developments for in vivo detection of metabolites and neurotransmitters in the brain for research and clinical purposes.
引用
收藏
页数:9
相关论文
共 95 条
[31]   MICEST: A potential tool for non-invasive detection of molecular changes in Alzheimer's disease [J].
Haris, Mohammad ;
Singh, Anup ;
Cai, Kejia ;
Nath, Kavindra ;
Crescenzi, Rachelle ;
Kogan, Feliks ;
Hariharan, Hari ;
Reddy, Ravinder .
JOURNAL OF NEUROSCIENCE METHODS, 2013, 212 (01) :87-93
[32]   Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI [J].
Haris, Mohammad ;
Nanga, Ravi Prakash Reddy ;
Singh, Anup ;
Cai, Kejia ;
Kogan, Feliks ;
Hariharan, Hari ;
Reddy, Ravinder .
NMR IN BIOMEDICINE, 2012, 25 (11) :1305-1309
[33]   In vivo mapping of brain myo-inositol [J].
Haris, Mohammad ;
Cai, Kejia ;
Singh, Anup ;
Hariharan, Hari ;
Reddy, Ravinder .
NEUROIMAGE, 2011, 54 (03) :2079-2085
[34]   Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging [J].
Harston, George W. J. ;
Tee, Yee Kai ;
Blockley, Nicholas ;
Okell, Thomas W. ;
Thandeswaran, Sivarajan ;
Shaya, Gabriel ;
Sheerin, Fintan ;
Cellerini, Martino ;
Payne, Stephen ;
Jezzard, Peter ;
Chappell, Michael ;
Kennedy, James .
BRAIN, 2015, 138 :36-42
[35]   Amide Proton Transfer Imaging of High Intensity Focused Ultrasound-Treated Tumor Tissue [J].
Hectors, Stefanie J. C. G. ;
Jacobs, Igor ;
Strijkers, Gustav J. ;
Nicolay, Klaas .
MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (04) :1113-1122
[36]   Imaging the accumulation and suppression of tau pathology using multiparametric MRI [J].
Holmes, Holly E. ;
Colgan, Niall ;
Ismail, Ozama ;
Ma, Da ;
Powell, Nick M. ;
O'Callaghan, James M. ;
Harrison, Ian F. ;
Johnson, Ross A. ;
Murray, Tracey K. ;
Ahmed, Zeshan ;
Heggenes, Morton ;
Fisher, Alice ;
Cardoso, M. J. ;
Modat, Marc ;
Walker-Samuel, Simon ;
Fisher, Elizabeth M. C. ;
Ourselin, Sebastien ;
O'Neill, Michael J. ;
Wells, Jack A. ;
Collins, Emily C. ;
Lythgoe, Mark F. .
NEUROBIOLOGY OF AGING, 2016, 39 :184-194
[37]   Ultrasonic disruption of the blood-brain barrier enables in vivo functional mapping of the mouse barrel field cortex with manganese-enhanced MRI [J].
Howles, Gabriel P. ;
Qi, Yi ;
Johnson, G. Allan .
NEUROIMAGE, 2010, 50 (04) :1464-1471
[38]   Characterizing amide proton transfer imaging in haemorrhage brain lesions using 3T MRI [J].
Jeong, Ha-Kyu ;
Han, Kyunghwa ;
Zhou, Jinyuan ;
Zhao, Yansong ;
Choi, Yoon Seong ;
Lee, Seung-Koo ;
Ahn, Sung Soo .
EUROPEAN RADIOLOGY, 2017, 27 (04) :1577-1584
[39]   Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 Tesla [J].
Jiang, Shanshan ;
Yu, Hao ;
Wang, Xianlong ;
Lu, Shilong ;
Li, Yufa ;
Feng, Lyujin ;
Zhang, Yi ;
Heo, Hye-Young ;
Lee, Dong-Hoon ;
Zhou, Jinyuan ;
Wen, Zhibo .
EUROPEAN RADIOLOGY, 2016, 26 (01) :64-71
[40]   Amide proton transfer imaging of human brain tumors at 3T [J].
Jones, Craig K. ;
Schlosser, Michael J. ;
van Zijl, Peter C. M. ;
Pomper, Martin G. ;
Golay, Xavier ;
Zhou, Jinyuan .
MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (03) :585-592