An approach to continuation using Krylov subspace methods

被引:0
|
作者
Walker, HF [1 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
来源
COMPUTATIONAL SCIENCE FOR THE 21ST CENTURY | 1997年
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:72 / 81
页数:10
相关论文
共 50 条
  • [41] Krylov type subspace methods for matrix polynomials
    Hoffnung, L
    Li, RC
    Ye, Q
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 415 (01) : 52 - 81
  • [42] Truncation strategies for optimal Krylov subspace methods
    De Sturler, E
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) : 864 - 889
  • [43] Practical Implementation of Krylov Subspace Spectral Methods
    James V. Lambers
    Journal of Scientific Computing, 2007, 32
  • [44] Krylov subspace methods for the generalized Sylvester equation
    Bao, Liang
    Lin, Yiqin
    Wei, Yimin
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) : 557 - 573
  • [45] Inexact Krylov subspace methods for linear systems
    van den Eshof, J
    Sleijpen, GLG
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) : 125 - 153
  • [46] A note on Krylov subspace methods for singular systems
    Cao, ZH
    Wang, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 350 (1-3) : 285 - 288
  • [47] Preserving symmetry in preconditioned Krylov subspace methods
    Chan, TF
    Chow, E
    Saad, Y
    Yeung, MC
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (02): : 568 - 581
  • [48] Krylov subspace methods for projected Lyapunov equations
    Stykel, T.
    Simoncini, V.
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (01) : 35 - 50
  • [49] Block Krylov subspace methods for functions of matrices
    Frommer, Andreas
    Lund, Kathryn
    Szyld, Daniel B.
    Electronic Transactions on Numerical Analysis, 2017, 47 : 100 - 126
  • [50] IDR: A new generation of Krylov subspace methods?
    Rendel, Olaf
    Rizvanolli, Anisa
    Zemke, Jens-Peter M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (04) : 1040 - 1061