Dirac point and transconductance of top-gated graphene field-effect transistors operating at elevated temperature

被引:8
作者
Hopf, T. [1 ]
Vassilevski, K. V. [1 ]
Escobedo-Cousin, E. [1 ]
King, P. J. [1 ]
Wright, N. G. [1 ]
O'Neill, A. G. [1 ]
Horsfall, A. B. [1 ]
Goss, J. P. [1 ]
Wells, G. H. [2 ]
Hunt, M. R. C. [2 ]
机构
[1] Newcastle Univ, Sch Elect & Elect Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Univ Durham, Dept Phys, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
EPITAXIAL-GRAPHENE; BAND-GAP; RAMAN; SI;
D O I
10.1063/1.4898562
中图分类号
O59 [应用物理学];
学科分类号
摘要
Top-gated graphene field-effect transistors )GFETs) have been fabricated using bilayer epitaxial graphene grown on the Si-face of 4H-SiC substrates by thermal decomposition of silicon carbide in high vacuum. Graphene films were characterized by Raman spectroscopy, Atomic Force Microscopy, Scanning Tunnelling Microscopy, and Hall measurements to estimate graphene thickness, morphology, and charge transport properties. A 27 nm thick Al2O3 gate dielectric was grown by atomic layer deposition with an e-beam evaporated Al seed layer. Electrical characterization of the GFETs has been performed at operating temperatures up to 100 degrees C limited by deterioration of the gate dielectric performance at higher temperatures. Devices displayed stable operation with the gate oxide dielectric strength exceeding 4.5 MV/cm at 100 degrees C. Significant shifting of the charge neutrality point and an increase of the peak transconductance were observed in the GFETs as the operating temperature was elevated from room temperature to 100 degrees C. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 33 条
[1]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[2]   RELATIONSHIP BETWEEN MEASURED AND INTRINSIC TRANSCONDUCTANCES OF FETS [J].
CHOU, SY ;
ANTONIADIS, DA .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1987, 34 (02) :448-450
[3]   Mapping the Dirac point in gated bilayer graphene [J].
Deshpande, A. ;
Bao, W. ;
Zhao, Z. ;
Lau, C. N. ;
LeRoy, B. J. .
APPLIED PHYSICS LETTERS, 2009, 95 (24)
[4]   Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors [J].
Farmer, Damon B. ;
Chiu, Hsin-Ying ;
Lin, Yu-Ming ;
Jenkins, Keith A. ;
Xia, Fengnian ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (12) :4474-4478
[5]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[6]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[7]   Optimizing the vacuum growth of epitaxial graphene on 6H-SiC [J].
Hopf, Toby ;
Vassilevski, Konstantin ;
Escobedo-Cousin, Enrique ;
Wright, Nick ;
O'Neill, Anthony ;
Horsfall, Alton ;
Goss, Jonathan ;
Barlow, Anders ;
Wells, George ;
Hunt, Michael .
SILICON CARBIDE AND RELATED MATERIALS 2013, PTS 1 AND 2, 2014, 778-780 :1154-+
[8]   Adsorption on epitaxial graphene on SiC(0001) [J].
Huang, Han ;
Wee, Andrew Thye Shen .
JOURNAL OF MATERIALS RESEARCH, 2014, 29 (03) :447-458
[9]   Raman Spectra of Epitaxial Graphene on SiC and of Epitaxial Graphene Transferred to SiO2 [J].
Lee, Dong Su ;
Riedl, Christian ;
Krauss, Benjamin ;
von Klitzing, Klaus ;
Starke, Ulrich ;
Smet, Jurgen H. .
NANO LETTERS, 2008, 8 (12) :4320-4325
[10]   Raman spectroscopy in graphene [J].
Malard, L. M. ;
Pimenta, M. A. ;
Dresselhaus, G. ;
Dresselhaus, M. S. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 473 (5-6) :51-87