On the functional equation for classical orthogonal polynomials on lattices

被引:11
作者
Castillo, K. [1 ]
Mbouna, D. [1 ]
Petronilho, J. [1 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
关键词
Functional equation; Regular functional; Classical orthogonal polynomials; Lattices; Racah polynomials; Askey-Wilson polynomials;
D O I
10.1016/j.jmaa.2022.126390
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Necessary and sufficient conditions for the regularity of solutions of the functional equation appearing in the theory of classical orthogonal polynomials on lattices are stated. Moreover, the functional Rodrigues formula and a closed formula for the recurrence coefficients are presented. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 19 条
[1]   On classical orthogonal polynomials related to Hahn's operator [J].
Alvarez-Nodarse, R. ;
Castillo, K. ;
Mbouna, D. ;
Petronilho, J. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (06) :487-505
[2]   ON CLASSICAL ORTHOGONAL POLYNOMIALS [J].
ATAKISHIYEV, NM ;
RAHMAN, M ;
SUSLOV, SK .
CONSTRUCTIVE APPROXIMATION, 1995, 11 (02) :181-226
[3]  
Castillo K., 2022, J MATH ANAL APPL, V514, DOI [10.1016/j.jmaa.2022.126358, DOI 10.1016/J.JMAA.2022.126358]
[4]   Characterization theorem for classical orthogonal polynomials on non-uniform lattices: the functional approach [J].
Foupouagnigni, M. ;
Nangho, M. Kenfack ;
Mboutngam, S. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (10) :739-758
[5]  
Foupouagnigni M, 1998, THESIS
[6]  
Geronimus J., 1940, Izv. Akad. Nauk SSSR, V4, P215
[7]  
Hahn W., 1935, MATH Z, V39, P634
[8]  
Hahn W., 1949, MATH NACHR, V2, P4, DOI DOI 10.1002/MANA.19490020103
[9]  
Ismail M., 2005, ENCY MATH ITS APPL, V98
[10]  
Koekoek R, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-3-642-05014-5