Future Circular Colliders

被引:12
作者
Benedikt, M. [1 ]
Blondel, A. [1 ]
Janot, P. [1 ]
Klein, M. [2 ]
Mangano, M. [1 ]
McCullough, M. [1 ]
Mertens, V. [1 ]
Oide, K. [1 ]
Riegler, W. [1 ]
Schulte, D. [1 ]
Zimmermann, F. [1 ]
机构
[1] CERN, CH-1211 Geneva 23, Switzerland
[2] Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England
来源
ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 69 | 2019年 / 69卷
基金
欧盟地平线“2020”;
关键词
high-energy physics; energy frontier; luminosity frontier; lepton collider; hadron collider; Higgs physics; electroweak phase transition; dark matter;
D O I
10.1146/annurev-nucl-101918-023748
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
After 10 years of physics at the Large Hadron Collider (LHC), the particle physics landscape has greatly evolved. Today, a staged Future Circular Collider (FCC), consisting of a luminosity-frontier highest-energy electron-positron collider (FCC-ee) followed by an energy-frontier hadron collider (FCC-hh), promises the most far-reaching physics program for the post-LHC era. FCC-ee will be a precision instrument used to study the Z, W, Higgs, and top particles, and will offer unprecedented sensitivity to signs of new physics. Most of the FCC-ee infrastructure could be reused for FCC-hh, which will provide proton-proton collisions at a center-of-mass energy of 100 TeV and could directly produce new particles with masses of up to several tens of TeV. This collider will also measure the Higgs self-coupling and explore the dynamics of electroweak symmetry breaking. Thermal dark matter candidates will be either discovered or conclusively ruled out by FCC-hh. Heavy-ion and electron-proton collisions (FCC-eh) will further contribute to the breadth of the overall FCC program. The integrated FCC infrastructure will serve the particle physics community through the end of the twenty-first century. This review combines key contents from the first three volumes of the FCC Conceptual Design Report.
引用
收藏
页码:389 / 415
页数:27
相关论文
共 39 条
[1]   Top-up injection schemes for future circular lepton collider [J].
Aiba, M. ;
Goddard, B. ;
Oide, K. ;
Papaphilippou, Y. ;
Hernandez, A. Saa ;
Shwartz, D. ;
White, S. ;
Zimmermann, F. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 880 :98-106
[2]  
[Anonymous], 2018, CERNLPCC201804
[3]  
[Anonymous], 2018, ARXIV180900285PHYSIC
[4]  
[Anonymous], 2017, ARXIV171007621
[5]  
[Anonymous], ARXIV10110352PHYSICS
[6]  
[Anonymous], 2012, CERN YELLOW REP MONO, DOI DOI 10.5170/CERN-2012-007
[7]  
Apollonio A, 2018, ICFA ADV BEAM DYN WO
[8]   Toward High-Power Klystrons With RF Power Conversion Efficiency on the Order of 90% [J].
Baikov, Andrey Yu. ;
Marrelli, Chiara ;
Syratchev, Igor .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (10) :3406-3412
[9]   High field septum magnet using a superconducting shield for the Future Circular Collider [J].
Barna, Daniel .
PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2017, 20 (04)
[10]   Dump system concepts for the Future Circular Collider [J].
Bartmann, W. ;
Atanasov, M. ;
Barnes, M. J. ;
Borburgh, J. ;
Burkart, F. ;
Goddard, B. ;
Kramer, T. ;
Lechner, A. ;
Ull, A. Sanz ;
Schmidt, R. ;
Stoel, L. S. ;
Ostojic, R. ;
Rodziewicz, J. ;
van Trappen, P. ;
Barna, D. .
PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2017, 20 (03)