Faster Algorithms for k-SUBSET SUM and Variations

被引:3
|
作者
Antonopoulos, Antonis [1 ]
Pagourtzis, Aris [1 ]
Petsalakis, Stavros [1 ]
Vasilakis, Manolis [1 ]
机构
[1] Natl Tech Univ Athens, Polytechnioupoli, Sch Elect & Comp Engn, Zografos 15780, Greece
来源
FRONTIERS OF ALGORITHMICS, IJTCS-FAW 2021 | 2022年 / 12874卷
关键词
SUBSET SUM; FFT; Color Coding; MULTIPLE SUBSET SUM; MULTIPLE KNAPSACK; k-SUBSET SUM; Pseudopolynomial Algorithms;
D O I
10.1007/978-3-030-97099-4_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present new, faster pseudopolynomial time algorithms for the k-SUBSET SUM problem, defined as follows: given a set Z of n positive integers and k targets t(1), ... , t(k), determine whether there exist k disjoint subsets Z(1), ... , Z(k) subset of Z, such that Sigma(Z(i)) = t(i), for i = 1, ... , k. Assuming t = max{t(1), ... , t(k)} is the maximum among the given targets, a standard dynamic programming approach based on Bellman's algorithm [3] can solve the problem in O(nt(k)) time. We build upon recent advances on SUBSET SUM due to Koiliaris and Xu [1 6] and Bringmann [1] in order to provide faster algorithms for k-SUBSET SUM. We devise two algorithms: a deterministic one of time complexity (O) over tilde (n(k)/((k+1))t(k)) and a randomised one of (O) over tilde (n + t(k)) complexity. We further demonstrate how these algorithms can be used in order to cope with variations of k-SUBSET SUM, namely SUBSET SUM RATIO, k-SUBSET SUM RATIO and MULTIPLE SUBSET SUM.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 50 条
  • [1] Faster algorithms for k-subset sum and variations
    Antonopoulos, Antonis
    Pagourtzis, Aris
    Petsalakis, Stavros
    Vasilakis, Manolis
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (01)
  • [2] Faster algorithms for k-subset sum and variations
    Antonis Antonopoulos
    Aris Pagourtzis
    Stavros Petsalakis
    Manolis Vasilakis
    Journal of Combinatorial Optimization, 2023, 45
  • [3] On k-Subset Sum using Enumerative Encoding
    Parque, Victor
    Miyashita, Tomoyuki
    2016 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2016, : 81 - 86
  • [4] Faster Space-Efficient Algorithms for Subset Sum and k-Sum
    Bansal, Nikhil
    Garg, Shashwat
    Nederlof, Jesper
    Vyas, Nikhil
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 198 - 209
  • [5] The k-subset sum problem over finite fields
    Wang, Weiqiong
    Nguyen, Jennifer
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 51 : 204 - 217
  • [6] Faster Pseudopolynomial Time Algorithms for Subset Sum
    Koiliaris, Konstantinos
    Xu, Chao
    ACM TRANSACTIONS ON ALGORITHMS, 2019, 15 (03)
  • [7] FASTER SPACE-EFFICIENT ALGORITHMS FOR SUBSET SUM, k-SUM, AND RELATED PROBLEMS
    Bansal, Nikhil
    Garg, Shashwat
    Nederlof, Jesper
    Vyas, Nikhil
    SIAM JOURNAL ON COMPUTING, 2018, 47 (05) : 1755 - 1777
  • [8] The k-subset sum problem over finite fields of characteristic 2
    Choe, Hyok
    Choe, Chunghyok
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 59 : 175 - 184
  • [9] Recursive Balanced k-Subset Sum Partition for Rule-constrained Resource Allocation
    Li, Zhuo
    Cao, Jiannong
    Yao, Zhongyu
    Li, Wengen
    Yang, Yu
    Wang, Jia
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2121 - 2124
  • [10] Multiset and K-subset transforming systems
    Nishida, TY
    MULTISET PROCESSING: MATHEMATICAL, COMPUTER SCIENCE, AND MOLECULAR COMPUTING POINTS OF VIEW, 2001, 2235 : 255 - 265