Smoothing out positively curved metric cones by Ricci expanders

被引:29
作者
Deruelle, Alix [1 ]
机构
[1] Univ Paris 11, Fac Sci, Dept Math, Batiment 425, F-91405 Orsay, France
基金
英国工程与自然科学研究理事会;
关键词
LOGARITHMIC SOBOLEV INEQUALITIES; SOLITONS; THEOREM;
D O I
10.1007/s00039-016-0360-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the possibility of desingularizing a positively curved metric cone by an expanding gradient Ricci soliton with positive curvature operator. This amounts to study the deformation of such geometric structures. As a consequence, we prove that the moduli space of conical positively curved gradient Ricci expanders is connected.
引用
收藏
页码:188 / 249
页数:62
相关论文
共 35 条
[1]  
Anderson M. T., 2008, GEOMETRIC FUNCTIONAL, V2, P305
[2]  
[Anonymous], 2006, Grad. Stud. Math
[3]   REAL ANALYTICITY OF SOLUTIONS OF HAMILTONS EQUATION [J].
BANDO, S .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (01) :93-97
[4]  
Berger M., 1955, Bull. Soc. Math. France, V83, P279
[5]  
Biquard O., 2000, Asterisque, V265
[6]  
Böhm C, 2008, ANN MATH, V167, P1079
[7]   Rotational symmetry of self-similar solutions to the Ricci flow [J].
Brendle, Simon .
INVENTIONES MATHEMATICAE, 2013, 194 (03) :731-764
[8]   DIFFERENTIAL HARNACK ESTIMATES FOR TIME-DEPENDENT HEAT EQUATIONS WITH POTENTIALS [J].
Cao, Xiaodong ;
Hamilton, Richard S. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) :989-1000
[9]  
Carrillo JA, 2009, COMMUN ANAL GEOM, V17, P721
[10]   Pseudolocality for the Ricci Flow and Applications [J].
Chau, Albert ;
Tam, Luen-Fai ;
Yu, Chengjie .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (01) :55-85