Understanding DNA organization, damage, and repair with super-resolution fluorescence microscopy

被引:14
作者
Miriklis, Esther L. [1 ]
Rozario, Ashley M. [1 ]
Rothenberg, Eli [2 ]
Bell, Toby D. M. [1 ]
Whelan, Donna R. [3 ]
机构
[1] Monash Univ, Sch Chem, Clayton, Vic, Australia
[2] NYU, Sch Med, Perlmutter Canc Ctr, Dept Biochem & Mol Pharmacol, New York, NY USA
[3] La Trobe Univ, La Trobe Inst Mol Sci, Dept Pharm & Biomed Sci, Bendigo, Vic, Australia
基金
澳大利亚研究理事会;
关键词
DNA damage; chromatin; super resolution microscopy; DNA structure; genomic integrity; OPTICAL RECONSTRUCTION MICROSCOPY; SUBDIFFRACTION-RESOLUTION; HOMOLOGOUS RECOMBINATION; LOCALIZATION MICROSCOPY; BREAK REPAIR; CHROMATIN; VISUALIZATION; REPLICATION; LIMIT; TRANSCRIPTION;
D O I
10.1088/2050-6120/abf239
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Super-resolution microscopy (SRM) comprises a suite of techniques well-suited to probing the nanoscale landscape of genomic function and dysfunction. Offering the specificity and sensitivity that has made conventional fluorescence microscopy a cornerstone technique of biological research, SRM allows for spatial resolutions as good as 10 nanometers. Moreover, single molecule localization microscopies (SMLMs) enable examination of individual molecular targets and nanofoci allowing for the characterization of subpopulations within a single cell. This review describes how key advances in both SRM techniques and sample preparation have enabled unprecedented insights into DNA structure and function, and highlights many of these new discoveries. Ongoing development and application of these novel, highly interdisciplinary SRM assays will continue to expand the toolbox available for research into the nanoscale genomic landscape.
引用
收藏
页数:21
相关论文
共 148 条
[1]  
Abbe E., 1873, Arch. Mikrosk. Anat., V9, P413, DOI [10.1007/BF02956173, DOI 10.1007/BF02956173]
[2]   The CRISPR tool kit for genome editing and beyond [J].
Adli, Mazhar .
NATURE COMMUNICATIONS, 2018, 9
[3]   Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system [J].
Anton, Tobias ;
Bultmann, Sebastian ;
Leonhardt, Heinrich ;
Markaki, Yolanda .
NUCLEUS, 2014, 5 (02) :163-172
[4]   Historical article: DNA polymorphism and the early history of the double helix [J].
Arnott, Struther .
TRENDS IN BIOCHEMICAL SCIENCES, 2006, 31 (06) :349-354
[5]   Telomeres and aging [J].
Aubert, Geraldine ;
Lansdorp, Peter M. .
PHYSIOLOGICAL REVIEWS, 2008, 88 (02) :557-579
[6]   Super resolution imaging of chromatin in pluripotency, differentiation, and reprogramming [J].
Aurelia Ricci, Maria ;
Pia Cosma, Maria ;
Lakadamyali, Melike .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2017, 46 :186-193
[7]   Chromatin Fibers Are Formed by Heterogeneous Groups of Nucleosomes In Vivo [J].
Aurelia Ricci, Maria ;
Manzo, Carlo ;
Filomena Garcia-Parajo, Maria ;
Lakadamyali, Melike ;
Pia Cosma, Maria .
CELL, 2015, 160 (06) :1145-1158
[8]   Super-Resolution Localization Microscopy of γ-H2AX and Heterochromatin after Folate Deficiency [J].
Bach, Margund ;
Savini, Claudia ;
Krufczik, Matthias ;
Cremer, Christoph ;
Roeesl, Frank ;
Hausmann, Michael .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (08)
[9]   Regulation of chromatin by histone modifications [J].
Bannister, Andrew J. ;
Kouzarides, Tony .
CELL RESEARCH, 2011, 21 (03) :381-395
[10]   What we talk about when we talk about nanoclusters [J].
Baumgart, Florian ;
Arnold, Andreas M. ;
Rossboth, Benedikt K. ;
Brameshuber, Mario ;
Schuetz, Gerhard J. .
METHODS AND APPLICATIONS IN FLUORESCENCE, 2019, 7 (01)