Fourth-Order Compact Split-Step Finite Difference Method for Solving the Two and Three-Dimensional Nonlinear Schrodinger Equations

被引:1
作者
Eskar, Rena [1 ]
Feng, Xinlong [1 ]
Huang, Pengzhan [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; operator splitting method; compact split-step finite difference method; conservation law; stability; CONVECTION-DIFFUSION; BOUNDARY-CONDITIONS; 3; DIMENSIONS; SCHEMES;
D O I
10.4208/aamm.OA-2017-0162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show a fourth-order compact split-step finite difference method to solve the two and three-dimensional nonlinear Schrodinger equations. The conservation properties and stability are analyzed for the proposed scheme. Numerical results show that the method can provide accurate and stable solutions for the nonlinear Schrodinger equation.
引用
收藏
页码:879 / 895
页数:17
相关论文
共 32 条
[1]   FINITE-DIFFERENCE DISCRETIZATION OF THE CUBIC SCHRODINGER-EQUATION [J].
AKRIVIS, GD .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (01) :115-124
[2]   Numerically absorbing boundary conditions for quantum evolution equations [J].
Arnold, A .
VLSI DESIGN, 1998, 6 (1-4) :313-319
[3]   UNIFORM ERROR ESTIMATES OF FINITE DIFFERENCE METHODS FOR THE NONLINEAR SCHRODINGER EQUATION WITH WAVE OPERATOR [J].
Bao, Weizhu ;
Cai, Yongyong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) :492-521
[4]   Convergence of fourth order compact difference schemes for three-dimensional convection-diffusion equations [J].
Berikelashvili, Givi ;
Gupta, Murli M. ;
Mirianashvili, Manana .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (01) :443-455
[5]  
Bratsos A.G., 2001, Korean J. Comput. Appl. Math, V8, P459
[6]   Difference schemes for solving the generalized nonlinear Schrodinger equation [J].
Chang, QS ;
Jia, EH ;
Sun, W .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (02) :397-415
[8]   A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coefficients [J].
Dehghan, Mehdi ;
Taleei, Ameneh .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (01) :43-51
[9]   Fourth-order compact solution of the nonlinear Klein-Gordon equation [J].
Dehghan, Mehdi ;
Mohebbi, Akbar ;
Asgari, Zohreh .
NUMERICAL ALGORITHMS, 2009, 52 (04) :523-540
[10]  
Dodd R.K., 1982, Solitons and Nonlinear Wave Equations