共 21 条
Global and Local-Contrast Guides Content-Aware Fusion for RGB-D Saliency Prediction
被引:134
作者:
Zhou, Wujie
[1
,2
]
Lv, Ying
[1
]
Lei, Jingsheng
[1
]
Yu, Lu
[2
]
机构:
[1] Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ, Inst Informat & Commun Engn, Hangzhou 310023, Peoples R China
来源:
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
|
2021年
/
51卷
/
06期
基金:
中国国家自然科学基金;
关键词:
Feature extraction;
Predictive models;
Fuses;
Convolution;
Visualization;
Image resolution;
Deep learning;
Contrast feature;
local-global feature;
RGB-D image;
RGB-D saliency prediction;
OBJECT DETECTION;
REGION;
D O I:
10.1109/TSMC.2019.2957386
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Many RGB-D visual attention models have been proposed with diverse fusion models; thus, the main challenge lies in the differences in the results between the different models. To address this challenge, we propose a local-global fusion model for fixation prediction on an RGB-D image; this method combines global and local information through a content-aware fusion module (CAFM) structure. First, it comprises a channel-based upsampling block for exploiting global contextual information and scaling up this information to the same resolution as the input. Second, our Deconv block contains a contrast feature module to utilize multilevel local features stage-by-stage for superior local feature representation. The experimental results demonstrate that the proposed model exhibits competitive performance on two databases.
引用
收藏
页码:3641 / 3649
页数:9
相关论文