Global and Local-Contrast Guides Content-Aware Fusion for RGB-D Saliency Prediction

被引:134
作者
Zhou, Wujie [1 ,2 ]
Lv, Ying [1 ]
Lei, Jingsheng [1 ]
Yu, Lu [2 ]
机构
[1] Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ, Inst Informat & Commun Engn, Hangzhou 310023, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2021年 / 51卷 / 06期
基金
中国国家自然科学基金;
关键词
Feature extraction; Predictive models; Fuses; Convolution; Visualization; Image resolution; Deep learning; Contrast feature; local-global feature; RGB-D image; RGB-D saliency prediction; OBJECT DETECTION; REGION;
D O I
10.1109/TSMC.2019.2957386
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many RGB-D visual attention models have been proposed with diverse fusion models; thus, the main challenge lies in the differences in the results between the different models. To address this challenge, we propose a local-global fusion model for fixation prediction on an RGB-D image; this method combines global and local information through a content-aware fusion module (CAFM) structure. First, it comprises a channel-based upsampling block for exploiting global contextual information and scaling up this information to the same resolution as the input. Second, our Deconv block contains a contrast feature module to utilize multilevel local features stage-by-stage for superior local feature representation. The experimental results demonstrate that the proposed model exhibits competitive performance on two databases.
引用
收藏
页码:3641 / 3649
页数:9
相关论文
共 21 条
  • [1] Attentive Cross-Modal Fusion Network for RGB-D Saliency Detection
    Liu, Di
    Zhang, Kao
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 967 - 981
  • [2] Robust RGB-D Fusion for Saliency Detection
    Wu, Zongwei
    Gobichettipalayam, Shriarulmozhivarman
    Tamadazte, Brahim
    Allibert, Guillaume
    Paudel, Danda Pani
    Demonceaux, Cedric
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 403 - 413
  • [3] Learning Selective Mutual Attention and Contrast for RGB-D Saliency Detection
    Liu, Nian
    Zhang, Ni
    Shao, Ling
    Han, Junwei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9026 - 9042
  • [4] Employing Bilinear Fusion and Saliency Prior Information for RGB-D Salient Object Detection
    Huang, Nianchang
    Yang, Yang
    Zhang, Dingwen
    Zhang, Qiang
    Han, Jungong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1651 - 1664
  • [5] EF-Net: A novel enhancement and fusion network for RGB-D saliency detection
    Chen, Qian
    Fu, Keren
    Liu, Ze
    Chen, Geng
    Du, Hongwei
    Qiu, Bensheng
    Shao, Ling
    PATTERN RECOGNITION, 2021, 112
  • [6] A uniform transformer-based structure for feature fusion and enhancement for RGB-D saliency detection
    Wang, Yue
    Jia, Xu
    Zhang, Lu
    Li, Yuke
    Elder, James H.
    Lu, Huchuan
    PATTERN RECOGNITION, 2023, 140
  • [7] RGB-D Saliency Detection by Multi-stream Late Fusion Network
    Chen, Hao
    Li, Youfu
    Su, Dan
    COMPUTER VISION SYSTEMS, ICVS 2017, 2017, 10528 : 459 - 468
  • [8] Deep Robotic Grasping Prediction with Hierarchical RGB-D Fusion
    Song, Yaoxian
    Wen, Jun
    Liu, Dongfang
    Yu, Changbin
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (01) : 243 - 254
  • [9] Deep Robotic Grasping Prediction with Hierarchical RGB-D Fusion
    Yaoxian Song
    Jun Wen
    Dongfang Liu
    Changbin Yu
    International Journal of Control, Automation and Systems, 2022, 20 : 243 - 254
  • [10] Attention-based contextual interaction asymmetric network for RGB-D saliency prediction
    Zhang, Xinyue
    Jin, Ting
    Zhou, Wujie
    Lei, Jingsheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 74 (74)