Nanoscale patterning through self-assembly of hydrophilic block copolymers with one chain end constrained to surface

被引:19
作者
Gao, Xiang [1 ]
Zhu, Shiping [1 ]
Sheardown, Heather [1 ]
Brash, John L. [1 ]
机构
[1] McMaster Univ, Dept Chem Engn, Hamilton, ON L8S 4L7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Nanopatterning; Polymer brush; Hydrophilic block copolymer; TRANSFER RADICAL POLYMERIZATION; TETHERED DIBLOCK COPOLYMERS; MULTIVARIANT ASSEMBLIES; BIOMEDICAL APPLICATIONS; SELECTIVE SOLVENTS; SOFT LITHOGRAPHY; SILICON SURFACES; NANO-OBJECTS; PMMA BRUSHES; PROTEIN;
D O I
10.1016/j.polymer.2010.02.021
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(oligo(ethylene glycol) methacrylate) (POEGMA)-block-poly(2-(methacryloyloxy) ethyl trimethy-ammonium chloride) (PMETAC) brushes were synthesized on silicon wafer surfaces by a surface-initiated atom transfer radical polymerization (ATRP) method. Salt-triggered collapse of the polyelectrolyte in solution was employed to induce phase segregations between the two hydrophilic blocks and thus to develop nanoscale patterns. The smallest feature size was about 10 nm and was tunable on the nanoscale. Various patterns including spherical aggregates, wormlike aggregates, and line patterns were obtained through adjusting the upper block layer thickness. These nanopatterns could switch between the different morphologies through the treatment of selective solvents. The adsorption behavior of fibrinogen on these patterns was also studied by ellipsometry, water contact angle measurement, AFM and radio labelling method. The results showed that these nanopatterns possess the ability to pattern proteins. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1771 / 1778
页数:8
相关论文
共 59 条
[1]   Protein repellent polyurethane-urea surfaces by chemical grafting of hydroxyl-terminated poly(ethylene oxide): effects of protein size and charge [J].
Archambault, JG ;
Brash, JL .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2004, 33 (02) :111-120
[2]  
az-Mochon J.J., 2007, CHEM SOC REV, V36, P449
[3]   Nanopatterns with biological functions [J].
Blattler, Thomas ;
Huwiler, Christoph ;
Ochsner, Mirjam ;
Staedler, Brigitte ;
Solak, Harun ;
Voeroes, Janos ;
Grandin, H. Michelle .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (08) :2237-2264
[4]   Protein patterning [J].
Blawas, AS ;
Reichert, WM .
BIOMATERIALS, 1998, 19 (7-9) :595-609
[5]   An addressable antibody nanoarray produced on a nanostructured surface [J].
Bruckbauer, A ;
Zhou, DJ ;
Kang, DJ ;
Korchev, YE ;
Abell, C ;
Klenerman, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (21) :6508-6509
[6]   Templated self-assembly of block copolymers: Top-down helps bottom-up [J].
Cheng, Joy Y. ;
Ross, Caroline A. ;
Smith, Henry I. ;
Thomas, Edwin L. .
ADVANCED MATERIALS, 2006, 18 (19) :2505-2521
[7]   Chemical and topographical patterning for directed cell attachment [J].
Craighead, HG ;
James, CD ;
Turner, AMP .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2001, 5 (2-3) :177-184
[8]   Microcontact printing of novel co-polymers in combination with proteins for cell-biological applications [J].
Csucs, G ;
Michel, R ;
Lussi, JW ;
Textor, M ;
Danuser, G .
BIOMATERIALS, 2003, 24 (10) :1713-1720
[9]   Surface engineering approaches to micropattern surfaces for cell-based assays [J].
Falconnet, D ;
Csucs, G ;
Grandin, HM ;
Textor, M .
BIOMATERIALS, 2006, 27 (16) :3044-3063
[10]   A novel approach to produce protein nanopatterns by combining nanoimprint lithography and molecular self-assembly [J].
Falconnet, D ;
Pasqui, D ;
Park, S ;
Eckert, R ;
Schift, H ;
Gobrecht, J ;
Barbucci, R ;
Textor, M .
NANO LETTERS, 2004, 4 (10) :1909-1914