Complex-Valued Burgers and KdV-Burgers Equations

被引:4
作者
Khanal, Netra [1 ]
Wu, Jiahong [2 ]
Yuan, Juan-Ming [3 ]
Zhang, Bing-Yu [4 ]
机构
[1] Univ Wisconsin Washington Cty, Dept Math, W Bend, WI 53095 USA
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[3] Providence Univ, Dept Appl Math, Taichung 433, Taiwan
[4] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
基金
美国国家科学基金会;
关键词
Complex Burgers equation; Complex KdV-Burgers equation; Finite-time singularity; Global regularity; DE-VRIES EQUATION; BLOW-UP; DISSIPATION;
D O I
10.1007/s00332-010-9062-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spatially periodic complex-valued solutions of the Burgers and KdV-Burgers equations are studied in this paper. It is shown that for any sufficiently large time T, there exists an explicit initial datum such that its corresponding solution of the Burgers equation blows up at T. In addition, the global convergence and regularity of series solutions is established for initial data satisfying mild conditions.
引用
收藏
页码:341 / 360
页数:20
相关论文
共 50 条
[31]   Blow-up phenomena for a family of Burgers-like equations [J].
Niu, Weisheng ;
Sun, Xiaotong ;
Chai, Xiaojuan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (02) :508-521
[32]   Dynamics for a complex-valued heat equation with an inverse nonlinearity [J].
Guo, Jong-Shenq ;
Ling, Chia-Tung .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (01) :153-160
[33]   Blowups of complex-valued solutions for some hydrodynamic models [J].
D. Li ;
Ya. G. Sinai .
Regular and Chaotic Dynamics, 2010, 15 :521-531
[34]   Blowups of Complex-valued Solutions for Some Hydrodynamic Models [J].
Li, D. ;
Sinai, Ya G. .
REGULAR & CHAOTIC DYNAMICS, 2010, 15 (4-5) :521-531
[35]   VISCOUS MARANGONI FLOW DRIVEN BY INSOLUBLE SURFACTANT AND THE COMPLEX BURGERS EQUATION [J].
Crowdy, Darren G. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (06) :2526-2546
[36]   Isolated Singularities of the 1D Complex Viscous Burgers Equation [J].
Li, Lu .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2009, 21 (04) :623-630
[37]   Global unsolvability of one-dimensional problems for Burgers-type equations [J].
Yushkov, E. V. ;
Korpusov, M. O. .
MATHEMATICAL NOTES, 2015, 98 (3-4) :503-514
[38]   On the solution of two-dimensional coupled Burgers' equations by variational iteration method [J].
Soliman, A. A. .
CHAOS SOLITONS & FRACTALS, 2009, 40 (03) :1146-1155
[39]   A canonical formulation of dissipative mechanics using complex-valued hamiltonians [J].
Rajeev, S. G. .
ANNALS OF PHYSICS, 2007, 322 (07) :1541-1555
[40]   LOCAL SOLVABILITY AND BLOW-UP FOR BENJAMIN-BONA-MAHONY-BURGERS, ROSENAU-BURGERS AND KORTEWEG-DE VRIES-BENJAMIN-BONA-MAHONY EQUATIONS [J].
Korpusov, Maxim O. ;
Yushkov, Egor V. .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,