Complex-Valued Burgers and KdV-Burgers Equations

被引:2
作者
Khanal, Netra [1 ]
Wu, Jiahong [2 ]
Yuan, Juan-Ming [3 ]
Zhang, Bing-Yu [4 ]
机构
[1] Univ Wisconsin Washington Cty, Dept Math, W Bend, WI 53095 USA
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[3] Providence Univ, Dept Appl Math, Taichung 433, Taiwan
[4] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
基金
美国国家科学基金会;
关键词
Complex Burgers equation; Complex KdV-Burgers equation; Finite-time singularity; Global regularity; DE-VRIES EQUATION; BLOW-UP; DISSIPATION;
D O I
10.1007/s00332-010-9062-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spatially periodic complex-valued solutions of the Burgers and KdV-Burgers equations are studied in this paper. It is shown that for any sufficiently large time T, there exists an explicit initial datum such that its corresponding solution of the Burgers equation blows up at T. In addition, the global convergence and regularity of series solutions is established for initial data satisfying mild conditions.
引用
收藏
页码:341 / 360
页数:20
相关论文
共 50 条
  • [21] Similarity Solutions for the Complex Burgers' Hierarchy
    Haider, Amlan K.
    Paliathanasis, A.
    Rangasamy, S.
    Leach, P. G. L.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2019, 74 (07): : 597 - 604
  • [22] Inverse optimality of boundary controls for uncertain burgers, KdV and KdVB equation
    Cai, Xiushan
    Lin, Yuhang
    Wang, Ping
    Huang, Shuwei
    INTERNATIONAL JOURNAL OF CONTROL, 2025,
  • [23] Singularities and heteroclinic connections in complex-valued evolutionary equations with a quadratic nonlinearity
    Jaquette, Jonathan
    Lessard, Jean-Philippe
    Takayasu, Akitoshi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 107
  • [24] Characteristic Study of Head-on Collision of Ion Acoustic Dissipative Solitons in a Ultracold Neutral Plasma Through the Both Sided Damped KdV-Burgers Equation
    Jayshree Mondal
    Santanu Raut
    Prasanta Chatterjee
    Laxmikanta Mandi
    Brazilian Journal of Physics, 2025, 55 (4)
  • [25] On the blow-up of solutions of the Benjamin-Bona-Mahony-Burgers and Rosenau-Burgers equations
    Korpusov, M. O.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 1737 - 1743
  • [26] COMPLEX-VALUED SOLUTIONS OF THE MKDV EQUATIONS IN GENERALIZED FOURIER-LEBESGUE SPACES
    Chen, Zijun
    Guo, Zihua
    Huang, Chunyan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (04) : 1621 - 1640
  • [27] On the Cauchy Problem for Dispersive Burgers-Type Equations
    Said, Ayman Rimah
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2023, 72 (04) : 1667 - 1715
  • [28] DISPERSIVE PERTURBATIONS OF BURGERS AND HYPERBOLIC EQUATIONS I: LOCAL THEORY
    Linares, Felipe
    Pilod, Didier
    Saut, Jean-Claude
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) : 1505 - 1537
  • [29] A class of blowup and global analytical solutions of the viscoelastic Burgers' equations
    An, Hongli
    Cheung, Ka-Luen
    Yuen, Manwai
    PHYSICS LETTERS A, 2013, 377 (37) : 2275 - 2279
  • [30] Blow-Up of Solutions to Fractional-in-Space Burgers-Type Equations
    Alotaibi, Munirah
    Jleli, Mohamed
    Samet, Bessem
    FRACTAL AND FRACTIONAL, 2021, 5 (04)