Thermostable Enzymes as Biocatalysts in the Biofuel Industry

被引:214
作者
Yeoman, Carl J. [1 ,4 ]
Han, Yejun [1 ,2 ]
Dodd, Dylan [1 ,2 ,3 ]
Schroeder, Charles M. [1 ,2 ,5 ,6 ]
Mackie, Roderick I. [1 ,2 ,4 ]
Cann, Isaac K. O. [1 ,2 ,3 ,4 ]
机构
[1] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Energy Biosci Inst, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Microbiol, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Anim Sci, Urbana, IL 61801 USA
[5] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
来源
ADVANCES IN APPLIED MICROBIOLOGY, VOL 70 | 2010年 / 70卷
关键词
ALPHA-L-ARABINOFURANOSIDASE; BACTERIUM THERMOTOGA-MARITIMA; BETA-D-XYLOSIDASE; STREPTOMYCES-THERMOVIOLACEUS OPC-520; CLOSTRIDIUM-THERMOCELLUM CELLULOSOME; THERMOPHILIC EUBACTERIUM THERMOTOGA; BACILLUS-THERMODENITRIFICANS TS-3; ARCHAEON SULFOLOBUS-SOLFATARICUS; THERMUS-NONPROTEOLYTICUS HG102; PROCESSIVE ENDOCELLULASE CELF;
D O I
10.1016/S0065-2164(10)70001-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Lignocellulose is the most abundant carbohydrate source in nature and represents an ideal renewable energy source. Thermostable enzymes that hydrolyze lignocellulose to its component sugars have significant advantages for improving the conversion rate of biomass over their mesophilic counterparts. We review here the recent literature on the development and use of thermostable enzymes for the depolymerization of lignocellulosic feedstocks for biofuel production. Furthermore, we discuss the protein structure, mechanisms of thermostability, and specific strategies that can be used to improve the thermal stability of lignocellulosic biocatalysts.
引用
收藏
页码:1 / 55
页数:55
相关论文
共 279 条
[51]   Genetic and biochemical characterization of a highly thermostable α-L-arabinofuranosidase from Thermobacillus xylanilyticus [J].
Debeche, T ;
Cummings, S ;
Connerton, I ;
Debeire, P ;
O'Donohue, MJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (04) :1734-1736
[52]   A thermostable α-arabinofuranosidase from xylanolytic Bacillus pumilus:: purification and characterisation [J].
Degrassi, G ;
Vindigni, A ;
Venturi, V .
JOURNAL OF BIOTECHNOLOGY, 2003, 101 (01) :69-79
[53]   Cellulase, clostridia, and ethanol [J].
Demain, AL ;
Newcomb, M ;
Wu, JHD .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2005, 69 (01) :124-+
[54]   A cellulase-poor, thermostable, alkalitolerant xylanase produced by Bacillus circulans AB 16 grown on rice straw and its application in biobleaching of eucalyptus pulp [J].
Dhillon, A ;
Gupta, JK ;
Jauhari, BM ;
Khanna, S .
BIORESOURCE TECHNOLOGY, 2000, 73 (03) :273-277
[55]   Guest Editorial - Cerebrovascular injury in stroke [J].
Ding, YC ;
Clark, JC .
NEUROLOGICAL RESEARCH, 2006, 28 (01) :3-10
[56]   High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei [J].
Divne, C ;
Ståhlberg, J ;
Teeri, TT ;
Jones, TA .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 275 (02) :309-325
[57]   THE 3-DIMENSIONAL CRYSTAL-STRUCTURE OF THE CATALYTIC CORE OF CELLOBIOHYDROLASE-I FROM TRICHODERMA-REESEI [J].
DIVNE, C ;
STAHLBERG, J ;
REINIKAINEN, T ;
RUOHONEN, L ;
PETTERSSON, G ;
KNOWLES, JKC ;
TEERI, TT ;
JONES, TA .
SCIENCE, 1994, 265 (5171) :524-528
[58]   Enzymatic deconstruction of xylan for biofuel production [J].
Dodd, Dylan ;
Cann, Isaac K. O. .
GLOBAL CHANGE BIOLOGY BIOENERGY, 2009, 1 (01) :2-17
[59]   Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium [J].
Donaghy, JA ;
Bronnenmeier, K ;
Soto-Kelly, PF ;
McKay, AM .
JOURNAL OF APPLIED MICROBIOLOGY, 2000, 88 (03) :458-466
[60]   Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068 [J].
Duffaud, GD ;
McCutchen, CM ;
Leduc, P ;
Parker, KN ;
Kelly, RM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (01) :169-177