Thermostable Enzymes as Biocatalysts in the Biofuel Industry

被引:214
作者
Yeoman, Carl J. [1 ,4 ]
Han, Yejun [1 ,2 ]
Dodd, Dylan [1 ,2 ,3 ]
Schroeder, Charles M. [1 ,2 ,5 ,6 ]
Mackie, Roderick I. [1 ,2 ,4 ]
Cann, Isaac K. O. [1 ,2 ,3 ,4 ]
机构
[1] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Energy Biosci Inst, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Microbiol, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Anim Sci, Urbana, IL 61801 USA
[5] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
来源
ADVANCES IN APPLIED MICROBIOLOGY, VOL 70 | 2010年 / 70卷
关键词
ALPHA-L-ARABINOFURANOSIDASE; BACTERIUM THERMOTOGA-MARITIMA; BETA-D-XYLOSIDASE; STREPTOMYCES-THERMOVIOLACEUS OPC-520; CLOSTRIDIUM-THERMOCELLUM CELLULOSOME; THERMOPHILIC EUBACTERIUM THERMOTOGA; BACILLUS-THERMODENITRIFICANS TS-3; ARCHAEON SULFOLOBUS-SOLFATARICUS; THERMUS-NONPROTEOLYTICUS HG102; PROCESSIVE ENDOCELLULASE CELF;
D O I
10.1016/S0065-2164(10)70001-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Lignocellulose is the most abundant carbohydrate source in nature and represents an ideal renewable energy source. Thermostable enzymes that hydrolyze lignocellulose to its component sugars have significant advantages for improving the conversion rate of biomass over their mesophilic counterparts. We review here the recent literature on the development and use of thermostable enzymes for the depolymerization of lignocellulosic feedstocks for biofuel production. Furthermore, we discuss the protein structure, mechanisms of thermostability, and specific strategies that can be used to improve the thermal stability of lignocellulosic biocatalysts.
引用
收藏
页码:1 / 55
页数:55
相关论文
共 279 条
[41]  
CORR MT, 2009, BIOFUELS
[42]   Crystal structure of a cellulosomal family 3 carbohydrate esterase from Clostridium thermocellum provides insights into the mechanism of substrate recognition [J].
Correia, Marcia A. S. ;
Prates, Jose A. M. ;
Bras, Joana ;
Fontes, Carlos M. G. A. ;
Newman, Joseph A. ;
Lewis, Richard J. ;
Gilbert, Harry J. ;
Flint, James E. .
JOURNAL OF MOLECULAR BIOLOGY, 2008, 379 (01) :64-72
[43]   Growth of the plant cell wall [J].
Cosgrove, DJ .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (11) :850-861
[44]   The structure of Rhodothermus marinus Cel12A, a highly thermostable family 12 endoglucanase, at 1.8 Å resolution [J].
Crennell, SJ ;
Hreggvidsson, GO ;
Karlsson, EN .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 320 (04) :883-897
[45]   Enzyme-substrate complex structures of a GH39 β-xylosidase from Geobacillus stearothermophilus [J].
Czjzek, M ;
Ben David, A ;
Braman, T ;
Shoham, G ;
Henrissat, B ;
Shoham, Y .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 353 (04) :838-846
[46]   Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases [J].
Dalrymple, BP ;
Cybinski, DH ;
Layton, I ;
McSweeney, CS ;
Xue, GP ;
Swadling, YJ ;
Lowry, JB .
MICROBIOLOGY-SGM, 1997, 143 :2605-2614
[47]   Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris [J].
Damaso, MCT ;
Almeida, MS ;
Kurtenbach, E ;
Martins, OB ;
Pereira, N ;
Andrade, CMMC ;
Albano, RM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (10) :6064-6072
[48]  
Daroit DJ, 2008, J MICROBIOL BIOTECHN, V18, P933
[49]   STRUCTURES AND MECHANISMS OF GLYCOSYL HYDROLASES [J].
DAVIES, G ;
HENRISSAT, B .
STRUCTURE, 1995, 3 (09) :853-859
[50]   Characterization of the Aureobasidium pullulans α-glucuronidase expressed in Saccharomyces cerevisiae [J].
de Wet, BJM ;
van Zyl, WH ;
Prior, BA .
ENZYME AND MICROBIAL TECHNOLOGY, 2006, 38 (05) :649-656