Exponents of the spectral functions and dynamical structure factor of the 1D Lieb-Liniger Bose gas

被引:7
作者
Carmelo, J. M. P. [1 ,2 ,3 ,4 ,5 ]
Sacramento, P. D. [4 ,5 ,6 ]
机构
[1] Univ Minho, Dept Phys, Campus Gualtar, P-4710057 Braga, Portugal
[2] Univ Minho, Ctr Phys, P-4169007 Oporto, Portugal
[3] Univ Porto, P-4169007 Oporto, Portugal
[4] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[5] Univ Lisbon, Inst Super Tecn, Dept Fis, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[6] Univ Lisbon, Inst Super Tecn, CeFEMA, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Dynamical correlation functions of many-particle systems; One-boson spectral function; Two-boson charge dynamical structure factor; Many-boson correlations; EXCITATION; SCATTERING; SYSTEMS; BOSONS;
D O I
10.1016/j.aop.2016.03.009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the (k, omega)-plane finite-energy line shape of the zero-temperature one-boson removal spectral function (omega < 0), one-boson addition spectral function (omega > 0), and charge dynamical structure factor (omega > 0) of the 1D Lieb-Liniger Bose gas with repulsive boson interaction c > 0. Our analysis of the problem focuses on the line shape at finite excitation energies in the vicinity of these functions spectrum upper (omega < 0) or lower (omega > 0) threshold. Specifically, we derive the exact momentum, interaction, and density dependences of the exponents controlling such a line shape in each of the N = 1, 2, 3,... momentum subdomains k is an element of [(N-1)2 pi n, N2 pi n]. Here n = N/L is the boson density, N the boson number, and L the system length. In the thermodynamic limit considered in our study nearly all spectral weight of the dynamical correlation functions is for large values of n/c contained in the N = 1 momentum subdomain k is an element of [0, 2 pi n]. As n/c decreases a small fraction of that weight is transferred to the remaining set of N = 2, 3, 4,... momentum subdomains, particularly to the N = 2 subdomain. In the case of the momentum subdomain k is an element of [0, 2 pi n], our exact results agree with those of previous studies. For that subdomain the above exponents are plotted as a function of the momentum for several n/c values. Our derivation of the line shapes of the three dynamical correlation functions relies on the use of a simplified form of the pseudofermion dynamical theory of the fermionic 1D Hubbard model suitably modified in this paper for the 1D Bose gas. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:102 / 127
页数:26
相关论文
共 33 条
[1]   INFRARED CATASTROPHE IN FERMI GASES WITH LOCAL SCATTERING POTENTIALS [J].
ANDERSON, PW .
PHYSICAL REVIEW LETTERS, 1967, 18 (24) :1049-&
[2]  
Berezin F., 1964, VESTN MOSK U, V1, P21
[3]   FINITE-SIZE EFFECTS AND INFRARED ASYMPTOTICS OF THE CORRELATION-FUNCTIONS IN 2 DIMENSIONS [J].
BOGOLIUBOV, NM ;
IZERGIN, AG ;
RESHETIKHIN, NY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (15) :5361-5369
[4]   CRITICAL EXPONENTS FOR INTEGRABLE MODELS [J].
BOGOLIUBOV, NM ;
IZERGIN, AG ;
KOREPIN, VE .
NUCLEAR PHYSICS B, 1986, 275 (04) :687-705
[5]   Dynamic structure factor of the one-dimensional Bose gas near the Tonks-Girardeau limit [J].
Brand, J ;
Cherny, AY .
PHYSICAL REVIEW A, 2005, 72 (03)
[6]   Dynamical functions of a 1D correlated quantum liquid [J].
Carmelo, J. M. P. ;
Bozi, D. ;
Penc, K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (41)
[7]   The low-energy limiting behavior of the pseudofermion dynamical theory [J].
Carmelo, JMP ;
Martelo, LM ;
Penc, K .
NUCLEAR PHYSICS B, 2006, 737 (03) :237-260
[8]   Finite-energy spectral-weight distributions of a 1D correlated metal [J].
Carmelo, JMP ;
Penc, K ;
Bozi, D .
NUCLEAR PHYSICS B, 2005, 725 (03) :421-466
[9]   PSEUDOPARTICLE-OPERATOR DESCRIPTION OF AN INTERACTING BOSONIC GAS [J].
CASTRO NETO, AH ;
LIN, HQ ;
CHEN, YH ;
CARMELO, JMP .
PHYSICAL REVIEW B, 1994, 50 (19) :14032-14047
[10]   One-particle dynamical correlations in the one-dimensional Bose gas [J].
Caux, Jean-Sebastien ;
Calabrese, Pasquale ;
Slavnov, Nikita A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,