High-Energy Ni-Rich Cathode Materials for Long-Range and Long-Life Electric Vehicles

被引:71
作者
Namkoong, Been [1 ]
Park, Nam-Yung [1 ]
Park, Geon-Tae [1 ]
Shin, Ji-Yong [2 ]
Beierling, Thorsten [3 ]
Yoon, Chong S. [4 ]
Sun, Yang-Kook [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[2] BASF Japan Ltd, 7-1-13 Doi Cho, Amagasaki, Hyogo 6600083, Japan
[3] BASF SE, Carl Bosch Str 38, D-67056 Ludwigshafen, Germany
[4] Hanyang Univ, Dept Mat Sci & Engn, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
boron doping; exposure time; microcracks; microstructure; Ni-rich layered cathodes; rod shape; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PROPERTIES; LIALYNI1-X-YCOXO2; CATHODE; DEGRADATION MECHANISM; ACCELERATED CALENDAR; THERMAL-STABILITY; NCA CATHODE; DENSITY; SURFACE; GENERATION;
D O I
10.1002/aenm.202200615
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-ion batteries (LIBs) in electric vehicles (EVs) are usually operated intermittently and maintained at high states of charge (SoCs) for long periods. Because the internal particles of Ni-rich cathodes are easily exposed to the electrolyte at high SoCs owing to mechanical instability, the electrolyte exposure time-during which highly reactive Ni4+ ions react with the electrolyte-critically affects the degradation of the cathode. Here, 1 mol% B doping of a core-shell concentration gradient (CSG) Li[Ni0.88Co0.10Al0.02]O-2 cathode (CSG-NCA88) is shown to dramatically alter the microstructure of the cathode and effectively protect the particle interior from parasitic electrolyte attack. The B-doped CSG-NCA88 cathode, CSG-NCAB87, maintains its original microstructure even after holding for 500 h in the fully charged state, whereas irreversible structural damage occurs in the pristine CSG-NCA88 cathode during the prolonged electrolyte exposure. The long-term cycling results confirm that the capacity retention of the cathodes is determined by the electrolyte exposure time at a high SoC and that microstructural modification can effectively suppress the time-dependent degradation from electrolyte attack. The proposed CSG-NCAB87 cathode can be utilized at full capacity without restricting the SoC, thus realizing the development of economical high-energy-density LIBs.
引用
收藏
页数:9
相关论文
共 41 条
[31]   Beyond Doping and Coating: Prospective Strategies for Stable High-Capacity Layered Ni-Rich Cathodes [J].
Sun, H. Hohyun ;
Ryu, Hoon-Hee ;
Kim, Un-Hyuck ;
Weeks, Jason A. ;
Heller, Adam ;
Sun, Yang-Kook ;
Mullins, C. Buddie .
ACS ENERGY LETTERS, 2020, 5 (04) :1136-1146
[32]   Nanorod Gradient Cathode: Preventing Electrolyte Penetration into Cathode Particles [J].
Sun, Ho-Hyun ;
Weeks, Jason A. ;
Heller, Adam ;
Mullins, C. Buddie .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (08) :6002-6011
[33]   Extended cycle life implications of fast charging for lithium-ion battery cathode [J].
Tanim, Tanvir R. ;
Yang, Zhenzhen ;
Colclasure, Andrew M. ;
Chinnam, Parameswara R. ;
Gasper, Paul ;
Lin, Yulin ;
Yu, Lei ;
Weddle, Peter J. ;
Wen, Jianguo ;
Dufek, Eric J. ;
Bloom, Ira ;
Smith, Kandler ;
Dickerson, Charles C. ;
Evans, Michael C. ;
Tsai, Yifen ;
Dunlop, Alison R. ;
Trask, Stephen E. ;
Polzin, Bryant J. ;
Jansen, Andrew N. .
ENERGY STORAGE MATERIALS, 2021, 41 :656-666
[34]  
Tesla, BIT BATT
[35]   Capacity fading of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge-discharge cycling on the suppression of the micro-crack generation of LiAlyNi1-x-yCoxO2 particle) [J].
Watanabe, Shoichiro ;
Kinoshita, Masahiro ;
Hosokawa, Takashi ;
Morigaki, Kenichi ;
Nakura, Kensuke .
JOURNAL OF POWER SOURCES, 2014, 260 :50-56
[36]   Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCoxO2 cathode after cycle tests in restricted depth of discharge ranges) [J].
Watanabe, Shoichiro ;
Kinoshita, Masahiro ;
Hosokawa, Takashi ;
Morigaki, Kenichi ;
Nakura, Kensuke .
JOURNAL OF POWER SOURCES, 2014, 258 :210-217
[37]   Highly Stabilized Ni-Rich Cathode Material with Mo Induced Epitaxially Grown Nanostructured Hybrid Surface for High-Performance Lithium-Ion Batteries [J].
Xu, Chunliu ;
Xiang, Wei ;
Wu, Zhenguo ;
Xu, Yadi ;
Li, Yongchun ;
Wang, Yuan ;
Xiao, Yao ;
Guo, Xiaodong ;
Zhong, Benhe .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (18) :16629-16638
[38]   Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries [J].
Yan, Pengfei ;
Zheng, Jianming ;
Gu, Meng ;
Xiao, Jie ;
Zhang, Ji-Guang ;
Wang, Chong-Min .
NATURE COMMUNICATIONS, 2017, 8
[39]   Microstructure Evolution of Concentration Gradient Li[Ni0.75Co0.10Mn0.15]O2 Cathode for Lithium-Ion Batteries [J].
Yoon, Chong S. ;
Kim, Suk Jun ;
Kim, Un-Hyuck ;
Park, Kang-Joon ;
Ryu, Hoon-Hee ;
Kim, Hee-Soo ;
Sun, Yang-Kook .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (28)
[40]   High-Energy Ni-Rich Li[NixCoyMn1-x-y]O2 Cathodes via Compositional Partitioning for Next-Generation Electric Vehicles [J].
Yoon, Chong S. ;
Park, Kang-Joon ;
Kim, Un-Hyuck ;
Kang, Ki. H. ;
Ryu, Hoon-Hee ;
Sun, Yang-Kook .
CHEMISTRY OF MATERIALS, 2017, 29 (24) :10436-10445