On minimal surfaces bounded by two convex curves in parallel planes

被引:3
作者
Traizet, Martin [1 ]
机构
[1] Univ Tours, Lab Math & Phys Theor, F-37200 Tours, France
关键词
Minimal surface with boundary; Robin function; concentration of curvature; CURVATURE; EMBEDDEDNESS; COMPACTNESS; STATIONARY;
D O I
10.4171/CMH/187
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a compact minimal surface bounded by two closed convex curves in parallel planes close enough to each other must be topologically an annulus.
引用
收藏
页码:39 / 71
页数:33
相关论文
共 14 条
[1]  
Ahlfors L.V., 1966, LECT QUASICONFORMAL
[2]   Harmonic radius and concentration of energy; Hyperbolic radius and Liouville's equations Delta U=e(U) and Delta U=Un-2/n+2 [J].
Bandle, C ;
Flucher, M .
SIAM REVIEW, 1996, 38 (02) :191-238
[3]   Nonexistence of certain complete minimal surfaces with planar ends [J].
Choe, J ;
Soret, M .
COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (01) :189-199
[4]   Embeddedness of minimal surfaces with total boundary curvature at most 4π [J].
Ekholm, T ;
White, B ;
Wienholtz, D .
ANNALS OF MATHEMATICS, 2002, 155 (01) :209-234
[5]   ON THE CONVEXITY OF A SOLUTION OF LIOUVILLE EQUATION [J].
GUSTAFSSON, B .
DUKE MATHEMATICAL JOURNAL, 1990, 60 (02) :303-311
[6]  
Lehto O., 1973, Die Grundlehren der mathematischen Wissenschaften, V126
[7]   MINIMAL-SURFACES BOUNDED BY CONVEX CURVES IN PARALLEL PLANES [J].
MEEKS, WH ;
WHITE, B .
COMMENTARII MATHEMATICI HELVETICI, 1991, 66 (02) :263-278
[8]   THE GEOMETRY OF PERIODIC MINIMAL-SURFACES [J].
MEEKS, WH ;
ROSENBERG, H .
COMMENTARII MATHEMATICI HELVETICI, 1993, 68 (04) :538-578
[9]  
Peres J., 2002, Lecture Notes in Math, V1775, P15
[10]  
Ros A, 1996, CALC VAR PARTIAL DIF, V4, P469, DOI 10.1007/BF01246152