Rotationally invariant noncommutative phase space of canonical type with recovered weak equivalence principle

被引:15
作者
Gnatenko, Kh. P. [1 ,2 ]
机构
[1] Ivan Franko Natl Univ Lviv, Dept Theoret Phys, 12 Drahomanov St, UA-79005 Lvov, Ukraine
[2] NAS Ukraine, Inst Condensed Matter Phys, Lab Stat Phys Complex Syst, UA-79011 Lvov, Ukraine
关键词
QUANTUM-MECHANICS; LANDAU PROBLEM; PARTICLES;
D O I
10.1209/0295-5075/123/50002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the influence of noncommutativity of coordinates and noncommutativity of momenta on the motion of a particle (macroscopic body) in uniform and nonuniform gravitational fields in noncommutative phase space of canonical type with preserved rotational symmetry. It is shown that because of noncommutativity the motion of a particle in a gravitational field is determined by its mass. The trajectory of motion of a particle in a uniform gravitational field corresponds to the trajectory of a harmonic oscillator with frequency determined by the value of the parameter of momentum noncommutativity and mass of the particle. The equations of motion of a macroscopic body in a gravitational field depend on its mass and composition. From this follows a violation of the weak equivalence principle caused by noncommutativity. We conclude that the weak equivalence principle is recovered in rotationally invariant noncommutative phase space if we consider the tensors of noncommutativity to be dependent on mass. So, finally we construct noncommutative algebra which is rotationally invariant, equivalent to noncommutative algebra of canonical type, and does not lead to violation of the weak equivalence principle. Copyright (C) EPLA, 2018
引用
收藏
页数:7
相关论文
共 50 条
[1]   Super-extended noncommutative Landau problem and conformal symmetry [J].
Alvarez, Pedro D. ;
Cortes, Jose L. ;
Horvathy, Peter A. ;
Plyushchay, Mikhail S. .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (03)
[2]   Tensor operators in noncommutative quantum mechanics [J].
Amorim, Ricardo .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[3]   Berry phase in the gravitational quantum well and the Seiberg-Witten map [J].
Bastos, C. ;
Bertolami, O. .
PHYSICS LETTERS A, 2008, 372 (34) :5556-5559
[4]   Entropic gravity, phase-space noncommutativity and the equivalence principle [J].
Bastos, Catarina ;
Bertolami, Orfeu ;
Dias, Nuno Costa ;
Prata, Joao Nuno .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (12)
[5]   Noncommutative gravitational quantum well -: art. no. 025010 [J].
Bertolami, O ;
Rosa, JG ;
de Aragao, CML ;
Castorina, P ;
Zappalà, D .
PHYSICAL REVIEW D, 2005, 72 (02) :1-9
[6]   Aspects of phase-space noncommutative quantum mechanics [J].
Bertolami, O. ;
Leal, P. .
PHYSICS LETTERS B, 2015, 750 :6-11
[7]   Quantum mechanics of a particle in an accelerated frame and the equivalence principle [J].
Bhattacharyya, Sukanta ;
Gangopadhyay, Sunandan ;
Saha, Anirban .
EPL, 2017, 120 (03)
[8]   Constraints on the quantum gravity scale from κ-Minkowski spacetime [J].
Borowiec, A. ;
Gupta, Kumar S. ;
Meljanac, S. ;
Pachol, A. .
EPL, 2010, 92 (02)
[9]   κ-Deformations and Extended κ-Minkowski Spacetimes [J].
Borowiec, Andrzej ;
Pachol, Anna .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2014, 10
[10]   Twisting and κ-Poincare [J].
Borowiec, Andrzej ;
Lukierski, Jerzy ;
Pachol, Anna .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (40)