New application of (G′/G)-expansion method to a nonlinear evolution equation

被引:16
作者
Ma, Yulan [1 ,2 ]
Li, Bangqing [3 ]
机构
[1] Beijing Technol & Business Univ, Dept Comp Sci & Engn, Beijing 100048, Peoples R China
[2] Beijing Technol & Business Univ, Dept Appl Math, Beijing 100048, Peoples R China
[3] China Univ Min & Technol, Sch Mech Elect & Informat Engn, Beijing 100083, Peoples R China
关键词
(G '/G)-expansion method; Modified generalized Vakhnenko equation; Traveling wave solution; Hump-like solitary wave solution; Cusp-like solitary wave solution; Loop-like solitary wave solution; TRAVELING-WAVE SOLUTIONS; AUTO-BACKLUND TRANSFORMATION; EXPANSION METHOD; BROER-KAUP; SYMBOLIC COMPUTATION; VAKHNENKO EQUATION; SOLITARY; EXPLICIT;
D O I
10.1016/j.amc.2010.03.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A series of exact traveling wave solutions are constructed by applying the (G'/G)-expansion method for a modified generalized Vakhnenko equation. A further investigation shows that the shape types of the solitary wave solutions could directly depend on the coefficients of the linear ordinary differential equation with the (G'/G)-expansion method. Hump-like solitary wave solution, cusp-like solitary wave solution and loop-like solitary wave solution can be observed by setting the coefficients at different values. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2137 / 2144
页数:8
相关论文
共 44 条
[11]   Some new solitary and travelling wave solutions of certain nonlinear diffusion-reaction equations using auxiliary equation method [J].
Kumar, Ranjit ;
Kaushal, R. S. ;
Prasad, Awadhesh .
PHYSICS LETTERS A, 2008, 372 (19) :3395-3399
[12]   (G′/G)-expansion method and new exact solutions for (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov system [J].
Li Bang-Qing ;
Ma Yu-Lan .
ACTA PHYSICA SINICA, 2009, 58 (07) :4373-4378
[13]   The (G′/G)-expansion method and travelling wave solutions for a higher-order nonlinear schrodinger equation [J].
Ling-Xiao, Li ;
Ming-Liang, Wang .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (02) :440-445
[14]   New applications of developed Jacobi elliptic function expansion methods [J].
Liu, GT ;
Fan, TY .
PHYSICS LETTERS A, 2005, 345 (1-3) :161-166
[15]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[16]   Symbolic computation of exact solutions for a nonlinear evolution equation [J].
Liu Yinping ;
Li Zhibin ;
Wang Kuncheng .
CHAOS SOLITONS & FRACTALS, 2007, 31 (05) :1173-1180
[17]   New application of (G′/G)-expansion method to high-dimensional nonlinear physical equations [J].
Ma Yu-Lan ;
Li Bang-Qing ;
Sun Jian-Zhi .
ACTA PHYSICA SINICA, 2009, 58 (11) :7402-7409
[18]   A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method [J].
Ma, Yulan ;
Li, Bangqing ;
Wang, Cong .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) :102-107
[19]   The N-soliton solution of the modified generalised Vakhnenko equation (a new nonlinear evolution equation) [J].
Morrison, AJ ;
Parkes, EJ .
CHAOS SOLITONS & FRACTALS, 2003, 16 (01) :13-26
[20]   An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations [J].
Parkes, EJ ;
Duffy, BR .
COMPUTER PHYSICS COMMUNICATIONS, 1996, 98 (03) :288-300