Using high-resolution imagery and deep learning to classify land-use following deforestation: a case study in Ethiopia

被引:10
作者
Masolele, Robert N. [1 ]
De Sy, Veronique [1 ]
Marcos, Diego [1 ]
Verbesselt, Jan [1 ]
Gieseke, Fabian [2 ]
Mulatu, Kalkidan Ayele [3 ]
Moges, Yitebitu [4 ]
Sebrala, Heiru [4 ]
Martius, Christopher [5 ]
Herold, Martin [1 ]
机构
[1] Wageningen Univ Res, Lab Geoinformat Sci & Remote Sensing, Pb Wageningen, Netherlands
[2] Univ Munster, Dept Informat Syst, Leonardo Campus 3, Munster, Germany
[3] Int Ctr Trop Agr CIAT, Addis Ababa, Ethiopia
[4] Environm Forest & Climate Change Commiss, Natl REDD Secretariat, Addis Ababa, Ethiopia
[5] Ctr Int Forestry Res CIFOR Germany gGmbH, Bonn, Germany
关键词
Attention U-Net; deep learning; Planet-NICFI; Land-use following deforestation; deforestation drivers; remote sensing; FOREST; SATELLITE; ATTENTION; NETWORKS; DRIVERS; COVER;
D O I
10.1080/15481603.2022.2115619
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
National-scale assessments of post-deforestation land-use are crucial for decreasing deforestation and forest degradation-related emissions. In this research, we assess the potential of different satellite data modalities (single-date, multi-date, multi-resolution, and an ensemble of multi-sensor images) for classifying land-use following deforestation in Ethiopia using the U-Net deep neural network architecture enhanced with attention. We performed the analysis on satellite image data retrieved across Ethiopia from freely available Landsat-8, Sentinel-2 and Planet-NICFI satellite data. The experiments aimed at an analysis of (a) single-date images from individual sensors to account for the differences in spatial resolution between image sensors in detecting land-uses, (b) ensembles of multiple images from different sensors (Planet-NICFI/Sentinel-2/Landsat-8) with different spatial resolutions, (c) the use of multi-date data to account for the contribution of temporal information in detecting land-uses, and, finally, (d) the identification of regional differences in terms of land-use following deforestation in Ethiopia. We hypothesize that choosing the right satellite imagery (sensor) type is crucial for the task. Based on a comprehensive visually interpreted reference dataset of 11 types of post-deforestation land-uses, we find that either detailed spatial patterns (single-date Planet-NICFI) or detailed temporal patterns (multi-date Sentinel-2, Landsat-8) are required for identifying land-use following deforestation, while medium-resolution single-date imagery is not sufficient to achieve high classification accuracy. We also find that adding soft-attention to the standard U-Net improved the classification accuracy, especially for small-scale land-uses. The models and products presented in this work can be used as a powerful data resource for governmental and forest monitoring agencies to design and monitor deforestation mitigation measures and data-driven land-use policy.
引用
收藏
页码:1446 / 1472
页数:27
相关论文
共 84 条
  • [1] Abadi M., 2015, IMPLEMENTATION OSDI, P265
  • [2] Willingness to Pay for Watershed Management
    Abebe, S. T.
    Dagnew, A. B.
    Zeleke, V. G.
    Eshetu, G. Z.
    Cirella, G. T.
    [J]. RESOURCES-BASEL, 2019, 8 (02):
  • [3] [Anonymous], 2017, 8-Day MODIS NDVI
  • [4] [Anonymous], 2014, Agriculture, forestry and other land use emissions by sources and removal by sinks: 1990- 2011 analysis
  • [5] [Anonymous], 2021, CIFOR Forests News
  • [6] Trends and drivers of land use/land cover change in Western Ethiopia
    Betru, Teshome
    Tolera, Motuma
    Sahle, Kefyalew
    Kassa, Habtemariam
    [J]. APPLIED GEOGRAPHY, 2019, 104 : 83 - 93
  • [7] BioCarbon Fund, 2020, BIOCARBON FUND IN SU
  • [8] Bishaw B, 2001, NE AFRICAN STUDIES, V8, P7
  • [9] Dynamic World, Near real-time global 10 m land use land cover mapping
    Brown, Christopher F.
    Brumby, Steven P.
    Guzder-Williams, Brookie
    Birch, Tanya
    Hyde, Samantha Brooks
    Mazzariello, Joseph
    Czerwinski, Wanda
    Pasquarella, Valerie J.
    Haertel, Robert
    Ilyushchenko, Simon
    Schwehr, Kurt
    Weisse, Mikaela
    Stolle, Fred
    Hanson, Craig
    Guinan, Oliver
    Moore, Rebecca
    Tait, Alexander M.
    [J]. SCIENTIFIC DATA, 2022, 9 (01)
  • [10] Chollet F, 2015, KERAS