Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

被引:274
作者
Hensgens, T. [1 ,2 ]
Fujita, T. [1 ,2 ]
Janssen, L. [1 ,2 ]
Li, Xiao [3 ,4 ]
Van Diepen, C. J. [5 ,6 ]
Reichl, C. [7 ]
Wegscheider, W. [7 ]
Das Sarma, S. [3 ,4 ]
Vandersypen, L. M. K. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, NL-2600 GA Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
[3] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[4] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[5] QuTech, NL-2600 AD Delft, Netherlands
[6] Netherlands Org Appl Sci Res TNO, NL-2600 AD Delft, Netherlands
[7] Swiss Fed Inst Technol, Solid State Phys Lab, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会; 日本学术振兴会;
关键词
COULOMB-BLOCKADE; SPIN; INSULATOR; SPECTROSCOPY; LATTICE; SYSTEM; STATES; ATOMS; QUBIT;
D O I
10.1038/nature23022
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter(1-3). Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models(4-6). Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian(7-17). Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made(18,19). Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition(20), which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition(1). As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
引用
收藏
页码:70 / +
页数:15
相关论文
共 37 条
[21]   A quautum-dot array as model for copper-oxide superconductors: A dedicated quantum simulator for the many-fermion problem [J].
Manousakis, E .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2002, 126 (5-6) :1501-1513
[22]   Noise Suppression Using Symmetric Exchange Gates in Spin Qubits [J].
Martins, Frederico ;
Malinowski, Filip K. ;
Nissen, Peter D. ;
Barnes, Edwin ;
Fallahi, Saeed ;
Gardner, Geoffrey C. ;
Manfra, Michael J. ;
Marcus, Charles M. ;
Kuemmeth, Ferdinand .
PHYSICAL REVIEW LETTERS, 2016, 116 (11)
[23]  
Medford J, 2013, NAT NANOTECHNOL, V8, P654, DOI [10.1038/NNANO.2013.168, 10.1038/nnano.2013.168]
[24]   Microwave spectroscopy of a quantum-dot molecule [J].
Oosterkamp, TH ;
Fujisawa, T ;
van der Wiel, WG ;
Ishibashi, K ;
Hijman, RV ;
Tarucha, S ;
Kouwenhoven, LP .
NATURE, 1998, 395 (6705) :873-876
[25]   Quantum Coherence in a One-Electron Semiconductor Charge Qubit [J].
Petersson, K. D. ;
Petta, J. R. ;
Lu, H. ;
Gossard, A. C. .
PHYSICAL REVIEW LETTERS, 2010, 105 (24)
[26]   Coherent manipulation of coupled electron spins in semiconductor quantum dots [J].
Petta, JR ;
Johnson, AC ;
Taylor, JM ;
Laird, EA ;
Yacoby, A ;
Lukin, MD ;
Marcus, CM ;
Hanson, MP ;
Gossard, AC .
SCIENCE, 2005, 309 (5744) :2180-2184
[27]   Reduced Sensitivity to Charge Noise in Semiconductor Spin Qubits via Symmetric Operation [J].
Reed, M. D. ;
Maune, B. M. ;
Andrews, R. W. ;
Borselli, M. G. ;
Eng, K. ;
Jura, M. P. ;
Kiselev, A. A. ;
Ladd, T. D. ;
Merkel, S. T. ;
Milosavljevic, I. ;
Pritchett, E. J. ;
Rakher, M. T. ;
Ross, R. S. ;
Schmitz, A. E. ;
Smith, A. ;
Wright, J. A. ;
Gyure, M. F. ;
Hunter, A. T. .
PHYSICAL REVIEW LETTERS, 2016, 116 (11)
[28]   Quantum simulation of the Hubbard model with dopant atoms in silicon [J].
Salfi, J. ;
Mol, J. A. ;
Rahman, R. ;
Klimeck, G. ;
Simmons, M. Y. ;
Hollenberg, L. C. L. ;
Rogge, S. .
NATURE COMMUNICATIONS, 2016, 7
[29]   Charge Frustration in a Triangular Triple Quantum Dot [J].
Seo, M. ;
Choi, H. K. ;
Lee, S. -Y. ;
Kim, N. ;
Chung, Y. ;
Sim, H. -S. ;
Umansky, V. ;
Mahalu, D. .
PHYSICAL REVIEW LETTERS, 2013, 110 (04)
[30]   Two-Dimensional Mott-Hubbard Electrons in an Artificial Honeycomb Lattice [J].
Singha, A. ;
Gibertini, M. ;
Karmakar, B. ;
Yuan, S. ;
Polini, M. ;
Vignale, G. ;
Katsnelson, M. I. ;
Pinczuk, A. ;
Pfeiffer, L. N. ;
West, K. W. ;
Pellegrini, V. .
SCIENCE, 2011, 332 (6034) :1176-1179