Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

被引:274
作者
Hensgens, T. [1 ,2 ]
Fujita, T. [1 ,2 ]
Janssen, L. [1 ,2 ]
Li, Xiao [3 ,4 ]
Van Diepen, C. J. [5 ,6 ]
Reichl, C. [7 ]
Wegscheider, W. [7 ]
Das Sarma, S. [3 ,4 ]
Vandersypen, L. M. K. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, NL-2600 GA Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
[3] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[4] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[5] QuTech, NL-2600 AD Delft, Netherlands
[6] Netherlands Org Appl Sci Res TNO, NL-2600 AD Delft, Netherlands
[7] Swiss Fed Inst Technol, Solid State Phys Lab, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会; 日本学术振兴会;
关键词
COULOMB-BLOCKADE; SPIN; INSULATOR; SPECTROSCOPY; LATTICE; SYSTEM; STATES; ATOMS; QUBIT;
D O I
10.1038/nature23022
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter(1-3). Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models(4-6). Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian(7-17). Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made(18,19). Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition(20), which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition(1). As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
引用
收藏
页码:70 / +
页数:15
相关论文
共 37 条
[1]   Twenty-five Years of High-Temperature Superconductivity - A Personal Review [J].
Anderson, Philip W. .
10TH INTERNATIONAL CONFERENCE ON MATERIALS AND MECHANISMS OF SUPERCONDUCTIVITY (M2S-X), 2013, 449
[2]   A cold-atom Fermi-Hubbard antiferromagnet [J].
Azurenko, Anton M. ;
Chiu, Christie S. ;
Ji, Geoffrey ;
Parsons, Maxwell F. ;
Kanasz-Nagy, Marton ;
Schmidt, Richard ;
Grusdt, Fabian ;
Demler, Eugene ;
Greif, Daniel ;
Greiner, Markus .
NATURE, 2017, 545 (7655) :462-+
[3]   Computer-automated tuning of semiconductor double quantum dots into the single-electron regime [J].
Baart, T. A. ;
Eendebak, P. T. ;
Reichl, C. ;
Wegscheider, W. ;
Vandersypen, L. M. K. .
APPLIED PHYSICS LETTERS, 2016, 108 (21)
[4]  
Baart TA, 2016, NAT NANOTECHNOL, V11, P330, DOI [10.1038/NNANO.2015.291, 10.1038/nnano.2015.291]
[5]   Spin liquids in frustrated magnets [J].
Balents, Leon .
NATURE, 2010, 464 (7286) :199-208
[6]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6
[7]   Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot [J].
Barthel, C. ;
Kjaergaard, M. ;
Medford, J. ;
Stopa, M. ;
Marcus, C. M. ;
Hanson, M. P. ;
Gossard, A. C. .
PHYSICAL REVIEW B, 2010, 81 (16)
[8]   Quantum Dot Systems: a versatile platform for quantum simulations [J].
Barthelemy, Pierre ;
Vandersypen, Lieven M. K. .
ANNALEN DER PHYSIK, 2013, 525 (10-11) :808-826
[9]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205
[10]   Quantum simulation of Fermi-Hubbard models in semiconductor quantum-dot arrays [J].
Byrnes, Tim ;
Kim, Na Young ;
Kusudo, Kenichiro ;
Yamamoto, Yoshihisa .
PHYSICAL REVIEW B, 2008, 78 (07)