Observability and Controllability of the 1-D Wave Equation in Domains with Moving Boundary

被引:11
作者
Sengouga, Abdelmouhcene [1 ]
机构
[1] Univ Msila, Lab Funct Anal & Geometry Spaces, Msila 28000, Algeria
关键词
Wave equation; Non-cylindrical domains; Observability; Controllability; Hilbert uniqueness method; Generalized Fourier series;
D O I
10.1007/s10440-018-0166-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By mean of generalized Fourier series and Parseval's equality in weighted L-2-spaces, we derive a sharp energy estimate for the wave equation in a bounded interval with a moving endpoint. Then, we show the observability, in a sharp time, at each of the endpoints of the interval. The observability constants are explicitly given. Using the Hilbert Uniqueness Method we deduce the exact boundary controllability of the wave equation.
引用
收藏
页码:117 / 128
页数:12
相关论文
共 15 条
  • [1] [Anonymous], 1969, Quelques methodes de resolution des problemes aux limites non lineaires
  • [2] [Anonymous], 1994, Exact controllability and stabilization. The multiplier method
  • [3] Asmar NH, 2005, Partial differential equations with Fourier Series and Boundary Value. Problems, V2nd
  • [4] Balazs N.L., 1961, J. Math. Anal. Appl., V3, P472, DOI 10.1016/0022-247X(61)90071-3
  • [5] CONTROL AND STABILIZATION FOR THE WAVE-EQUATION, PART .3. DOMAIN WITH MOVING BOUNDARY
    BARDOS, C
    CHEN, G
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1981, 19 (01) : 123 - 138
  • [6] Exact controllability for a one-dimensional wave equation with the fixed endpoint control
    Cui, Lizhi
    Jiang, Yang
    Wang, Yu
    [J]. BOUNDARY VALUE PROBLEMS, 2015, : 1 - 10
  • [7] Exact controllability for a one-dimensional wave equation in non-cylindrical domains
    Cui, Lizhi
    Liu, Xu
    Gao, Hang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) : 612 - 625
  • [8] Problems on Time-Varying Domains: Formulation, Dynamics, and Challenges
    Knobloch, E.
    Krechetnikov, R.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2015, 137 (01) : 123 - 157
  • [9] Komornik V., 2005, Fourier series in control theory
  • [10] Lions J-L., 1988, CONTROLABILIT EXACTE