Randomized algorithms for fast computation of low rank tensor ring model

被引:19
作者
Ahmadi-Asl, Salman [1 ]
Cichocki, Andrzej [1 ,2 ]
Huy Phan, Anh [1 ]
Asante-Mensah, Maame G. [1 ]
Musavian Ghazani, Mirfarid [1 ]
Tanaka, Toshihisa [3 ]
Oseledets, Ivan [1 ]
机构
[1] Skolkovo Inst Sci & Technol SKOLTECH, CDISE, Moscow, Russia
[2] Nicolaus Copernicus Univ, PL-87100 Torun, Poland
[3] Tokyo Univ Agr & Technol, Tokyo, Japan
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 01期
关键词
Tensor Ring-Tensor Train (TR-TT) decompositions; randomized algorithm; random projection; MATRIX PRODUCT STATES; LARGE-SCALE MATRICES; RENORMALIZATION-GROUP; APPROXIMATION; DECOMPOSITION; OPTIMIZATION; COMPLETION; NETWORKS; REDUCTION;
D O I
10.1088/2632-2153/abad87
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Randomized algorithms are efficient techniques for big data tensor analysis. In this tutorial paper, we review and extend a variety of randomized algorithms for decomposing large-scale data tensors in Tensor Ring (TR) format. We discuss both adaptive and nonadaptive randomized algorithms for this task. Our main focus is on the random projection technique as an efficient randomized framework and how it can be used to decompose large-scale data tensors in the TR format. Simulations are provided to support the presentation and efficiency, and performance of the presented algorithms are compared.
引用
收藏
页数:21
相关论文
共 115 条
  • [91] SOME MATHEMATICAL NOTES ON 3-MODE FACTOR ANALYSIS
    TUCKER, LR
    [J]. PSYCHOMETRIKA, 1966, 31 (03) : 279 - 279
  • [92] Incomplete cross approximation in the mosaic-skeleton method
    Tyrtyshnikov, EE
    [J]. COMPUTING, 2000, 64 (04) : 367 - 380
  • [93] Upadhyay J., 2018, ADV NEURAL INFORM PR, P4176
  • [94] A NEW TRUNCATION STRATEGY FOR THE HIGHER-ORDER SINGULAR VALUE DECOMPOSITION
    Vannieuwenhoven, Nick
    Vandebril, Raf
    Meerbergen, Karl
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02) : A1027 - A1052
  • [95] USING THE TENSOR-TRAIN APPROACH TO SOLVE THE GROUND-STATE EIGENPROBLEM FOR HYDROGEN MOLECULES
    Veit, Alexander
    Scott, L. Ridgway
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (01) : B190 - B220
  • [96] Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems
    Verstraete, F.
    Murg, V.
    Cirac, J. I.
    [J]. ADVANCES IN PHYSICS, 2008, 57 (02) : 143 - 224
  • [97] Vervliet N., 2016, Tensorlab user guide
  • [98] Class of quantum many-body states that can be efficiently simulated
    Vidal, G.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (11)
  • [99] Wide Compression: Tensor Ring Nets
    Wang, Wenqi
    Sun, Yifan
    Eriksson, Brian
    Wang, Wenlin
    Aggarwal, Vaneet
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 9329 - 9338
  • [100] Efficient Low Rank Tensor Ring Completion
    Wang, Wenqi
    Aggarwal, Vaneet
    Aeron, Shuchin
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5698 - 5706